
11

Advanced Name and

Address Conversions

11.1 Introduction

The two functions described in Chapter 9, gethostbyname and gethostbyaddr , are
protocol dependent. When using the former, we must know which member of the
socket address structure to move the result into (e.g., the sin_addr member for IPv4 or
the sin6_addr member for IPv6), and when calling the latter, we must know which
member contains the binary address. This chapter begins with the new Posix.1g
getaddrinfo function that provides protocol independence for our applications. We
cover its complement, getnameinfo , later in the chapter.

We then use this function and develop six functions of our own that handle the typ-
ical scenarios for TCP and UDP clients and servers. We use these functions throughout
the remainder of the text instead of calling getaddrinfo directly.

The functions gethostbyname and gethostbyaddr are also nice examples of
functions that are nonreentrant. We show why this is so and describe some replacement
functions that avoid this problem. Reentrancy is a problem that we come back to in
Chapter 23, but we are able to show and explain the problem now, without having to
understand the details of threads.

We finish the chapter showing our complete implementation of getaddrinfo .
This lets us understand more about the function: how it operates, what it returns, and
its interaction with IPv4 and IPv6.

11.2 getaddrinfo Function

The getaddrinfo function hides all of the protocol dependencies in the library func-
tion, which is where they belong. The application deals only with the socket address
structures that are filled in by getaddrinfo . This function is defined in Posix.1g.

© Copyright 1998 by Prentice Hall PTR, All rights reserved 273

274 Advanced Name and Address Conversions Chapter 11

The Posix.1g definition of this function comes from an earlier proposal by Keith Sklower for a
function named getconninfo . This function was the result of discussions with Eric Allman,
William Durst, Michael Karels, and Steven Wise and from an early implementation written by
Eric Allman. The observation that specifying a hostname and a service name would suffice for
connecting to a service independent of protocol details was made by Marshall Rose in a pro-
posal to X/Open.

#include <netdb.h>

int getaddrinfo(const char * hostname, const char * service,
const struct addrinfo * hints, struct addrinfo ** result);

Returns: 0 if OK, nonzero on error (see Figure 11.3)

This function returns, through the result pointer, a pointer to a linked list of addrinfo
structures, which is defined by including <netdb.h> :

struct addrinfo {
int ai_flags; /* AI_PASSIVE, AI_CANONNAME */
int ai_family; /* AF_xxx */
int ai_socktype; /* SOCK_xxx */
int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */
size_t ai_addrlen; /* length of ai_addr */
char *ai_canonname; /* ptr to canonical name for host */
struct sockaddr *ai_addr; /* ptr to socket address structure */
struct addrinfo *ai_next; /* ptr to next structure in linked list */

};

The hostname is either a hostname or an address string (dotted-decimal for IPv4 or a
hex string for IPv6). The service is either a service name or a decimal port number
string. (Recall our solution to Exercise 9.6 where we allowed an address string for the
host or a port number string for the service.)

hints is either a null pointer or a pointer to an addrinfo structure that the caller
fills in with hints about the types of information that the caller wants returned. For
example, if the specified service is provided for both TCP and UDP (e.g., the domain
service, which refers to a DNS server), the caller can set the ai_socktype member of
the hints structure to SOCK_DGRAM. The only information returned will be for datagram
sockets.

The members of the hints structure that can be set by the caller are:

• ai_flags (AI_PASSIVE , AI_CANONNAME),
• ai_family (an AF_xxx value),
• ai_socktype (a SOCK_xxx value), and
• ai_protocol .

The AI_PASSIVE flag indicates that the socket will be used for a passive open, and the
AI_CANONNAMEflag tells the function to return the canonical name of the host.

If the hints argument is a null pointer, the function assumes a value of 0 for
ai_flags , ai_socktype , and ai_protocol , and a value of AF_UNSPEC for
ai_family .

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.2 getaddrinfo Function 275

If the function returns success (0), the variable pointed to by the result argument is
filled in with a pointer to a linked list of addrinfo structures, linked through the
ai_next pointer. There are two ways that multiple structures can be returned.

1. If there are multiple addresses associated with the hostname, one structure is
returned for each address that is usable with the requested address family (the
ai_family hint, if specified).

2. If the service is provided for multiple socket types, one structure can be
returned for each socket type, depending on the ai_socktype hint.

For example, if no hints are provided and if the domain service is looked up for a host
with two IP addresses, four addrinfo structures are returned:

• one for the first IP address and a socket type of SOCK_STREAM,
• one for the first IP address and a socket type of SOCK_DGRAM,
• one for the second IP address and a socket type of SOCK_STREAM, and
• one for the second IP address and a socket type of SOCK_DGRAM.

We show a picture of this example in Figure 11.1. There is no guaranteed order of the
structures when multiple items are returned; that is, we cannot assume that TCP ser-
vices are returned before UDP services.

Although not guaranteed, an implementation should return the IP addresses in the same order
as they are returned by the DNS. For example, many DNS servers sort the returned addresses
so that if the host sending the query and the name server are on the same network, then
addresses on that shared network are returned first. Also, newer versions of BIND allow the
resolver to specify an address sorting order in the /etc/resolv.conf file.

The information returned in the addrinfo structures is ready for a call to socket
and then either a call to connect , or sendto (for a client) or bind (for a server). The
arguments to socket are the members ai_family , ai_socktype , and
ai_protocol . The second and third arguments to either connect or bind are
ai_addr (a pointer to a socket address structure of the appropriate type, filled in by
getaddrinfo) and ai_addrlen (the length of this socket address structure).

If the AI_CANONNAMEflag is set in the hints structure, the ai_canonname member
of the first returned structure points to the canonical name of the host. In terms of the
DNS this is normally the FQDN.

Figure 11.1 shows the returned information if we execute

struct addrinfo hints, *res;

bzero(&hints, sizeof(hints));
hints.ai_flags = AI_CANONNAME;
hints.ai_family = AF_INET;

getaddrinfo("bsdi", "domain", &hints, &res);

In this figure everything other than the res variable is dynamically allocated memory
(e.g., from malloc). We assume that the canonical name of the host bsdi is
bsdi.kohala.com and that this host has two IPv4 addresses in the DNS (Figure 1.16).

© Copyright 1998 by Prentice Hall PTR, All rights reserved

276 Advanced Name and Address Conversions Chapter 11

ai_flags

ai_family

ai_socktype

ai_protocol

ai_addrlen

ai_canonname

ai_addr

ai_next

addrinfo{}

ai_flags

ai_family

ai_socktype

ai_protocol

ai_addrlen

ai_canonname

ai_addr

ai_next

addrinfo{}

ai_flags

ai_family

ai_socktype

ai_protocol

ai_addrlen

ai_canonname

ai_addr

ai_next

addrinfo{}

ai_flags

ai_family

ai_socktype

ai_protocol

ai_addrlen

ai_canonname

ai_addr

ai_next

addrinfo{}

res:

AF_INET

SOCK_STREAM

0

16

AF_INET

SOCK_DGRAM

0

16

NULL

AF_INET

SOCK_STREAM

0

16

NULL

AF_INET

SOCK_DGRAM

0

16

NULL

NULL

sockaddr_in{}

sockaddr_in{}

sockaddr_in{}

sockaddr_in{}

16 , AF_INET , 53

206.62.226.35

16 , AF_INET , 53

206.62.226.35

16 , AF_INET , 53

206.62.226.66

16 , AF_INET , 53

206.62.226.66

bsdi.kohala.com\0

dynamically allocated by getaddrinfo

Figure 11.1 Example of information returned by getaddrinfo .

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.2 getaddrinfo Function 277

Port 53 is for the domain service, and realize that this port number will be in network
byte order in the socket address structures. We also show the returned ai_protocol
values as 0 since the combination of the ai_family and ai_socktype completely
specifies the protocol for TCP and UDP. It would also be OK for getaddrinfo to
return an ai_protocol of IPPROTO_TCPfor the two SOCK_STREAMstructures, and
an ai_protocol of IPPROTO_UDPfor the two SOCK_DGRAMstructures.

Figure 11.2 summarizes the number of addrinfo structures returned for each
address that is being returned, based on the specified service name (which can be a dec-
imal port number) and any ai_socktype hint.

Service is a name, service provided by:
TCP only UDP only TCP and UDP

ai_socktype
hint

Service is a
port number

0 1 1 2 2
SOCK_STREAM 1 error 1 1
SOCK_DGRAM error 1 1 1

Figure 11.2 Number of addrinfo structures returned per IP address.

Multiple addrinfo structures are returned for each IP address only when no
ai_socktype hint is provided and either the service name is supported by TCP and
UDP (as indicated in the /etc/services file) or a port number is specified.

If we enumerated all 64 possible inputs to getaddrinfo (there are six input vari-
ables), many would be invalid and some make little sense. Instead we will look at the
common cases.

• Specify the hostname and service. This is normal for a TCP or UDP client. On
return a TCP client loops through all returned IP addresses, calling socket and
connect for each one, until the connection succeeds or until all addresses have
been tried. We show an example of this with our tcp_connect function in Fig-
ure 11.6.

For a UDP client, the socket address structure filled in by getaddrinfo would
be used in a call to sendto or connect . If the client can tell that the first
address doesn’t appear to work (either an error on a connected UDP socket or a
timeout on an unconnected socket), additional addresses can be tried.

If the client knows it handles only one type of socket (e.g., Telnet and FTP clients
handle only TCP, TFTP clients handle only UDP), then the ai_socktype mem-
ber of the hints structure should be specified as either SOCK_STREAMor
SOCK_DGRAM.

• A typical server specifies service but not the hostname, and specifies the
AI_PASSIVE flag in the hints structure. The socket address structures returned
should contain an IP address of INADDR_ANY(for IPv4) or IN6ADDR_ANY_INIT
(for IPv6). A TCP server then calls socket , bind , and listen . If the server
wants to malloc another socket address structure to obtain the client’s address
from accept , the returned ai_addrlen value specifies this size.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

278 Advanced Name and Address Conversions Chapter 11

A UDP server would call socket , bind , and then recvfrom . If the server
wants to malloc another socket address structure to obtain the client’s address
from recvfrom , the returned ai_addrlen value specifies this size.

As with the typical client code, if the server knows it only handles one type of
socket, the ai_socktype member of the hints structure should be set to either
SOCK_STREAMor SOCK_DGRAM. This avoids having multiple structures
returned, possibly with the wrong ai_socktype value.

• The TCP servers that we have shown so far create one listening socket, and the
UDP servers create one datagram socket. That is what we assume in the previ-
ous item. An alternate server design is for the server to handle multiple sockets
using select . In this scenario the server would go through the entire list of
structures returned by getaddrinfo , create one socket per structure, and use
select .

The problem with this technique is that one reason for getaddrinfo returning multiple
structures is when a service can be handled by IPv4 and IPv6 (Figure 11.4). But these two
protocols are not completely independent, as we saw in Section 10.2. That is, if we create
a listening IPv6 socket for a given port, there is no need to also create a listening IPv4
socket for that same port, because connections arriving from IPv4 clients are automati-
cally handled by the protocol stack and by the IPv6 listening socket.

Despite the fact that getaddrinfo is ‘‘better ’’ than the gethostbyname and
getservbyname functions (it makes it easier to write protocol-independent code, one
function handles both the hostname and the service, and all the returned information is
dynamically allocated, not statically allocated), it is still not as easy to use as it could be.
The problem is that we must allocate a hints structure, initialize it to 0, fill in the desired
fields, call getaddrinfo , and then traverse a linked list trying each one. In the next
sections we provide some simpler interfaces for the typical TCP and UDP clients and
servers that we write in the remainder of this text.

getaddrinfo solves the problem of converting hostnames and service names into
socket address structures. In Section 11.13 we describe the reverse function,
getnameinfo , which converts socket address structures into hostnames and service
names. In Section 11.16 we provide an implementation of getaddrinfo ,
getnameinfo , and freeaddrinfo .

11.3 gai_strerror Function

The nonzero error return values from getaddrinfo have the names and meanings
shown in Figure 11.3. The function gai_strerror takes one of these values as an
argument and returns a pointer to the corresponding error string.

#include <netdb.h>

char *gai_strerror(int error);

Returns: pointer to string describing error message

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.5 getaddrinfo Function: IPv6 and Unix Domain 279

Constant Description

EAI_ADDRFAMILY address family for hostname not supported
EAI_AGAIN temporary failure in name resolution
EAI_BADFLAGS invalid value for ai_flags
EAI_FAIL nonrecoverable failure in name resolution
EAI_FAMILY ai_family not supported
EAI_MEMORY memory allocation failure
EAI_NODATA no address associated with hostname
EAI_NONAME hostname nor service provided, or not known
EAI_SERVICE service not supported for ai_socktype
EAI_SOCKTYPE ai_socktype not supported
EAI_SYSTEM system error returned in errno

Figure 11.3 Nonzero error return constants from getaddrinfo .

11.4 freeaddrinfo Function

All of the storage returned by getaddrinfo , the addrinfo structures, the ai_addr
structures, and the ai_canonname string are obtained dynamically from malloc . This
storage is returned by calling freeaddrinfo .

#include <netdb.h>

void freeaddrinfo(struct addrinfo * ai);

ai should point to the first of the addrinfo structures returned by getaddrinfo . All
the structures in the linked list are freed, along with any dynamic storage pointed to by
those structures (e.g., socket address structures and canonical hostnames).

Assume we call getaddrinfo , traverse the linked list of addrinfo structures, and
find the desired structure. If we then try to save a copy of the information by copying
just the addrinfo structure and then call freeaddrinfo , we have a lurking bug. The
reason is that the addrinfo structure itself points to dynamically allocated memory
(for the socket address structure and possibly the canonical name) and memory pointed
to by our saved structure is returned to the system when freeaddrinfo is called and
can be used for something else.

Making a copy of just the addrinfo structure and not the structures that it in turn points to is
called a shallow copy. Copying the addrinfo structure and all the structures that it points to is
called a deep copy.

11.5 getaddrinfo Function: IPv6 and Unix Domain

Although Posix.1g defines the getaddrinfo function, it says nothing about IPv6 at all.
The interaction between this function, the resolver (especially the RES_USE_INET6
option; recall Figure 9.5), and IPv6 is nontrivial. We note the following points before
summarizing these interactions in Figure 11.4.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

280 Advanced Name and Address Conversions Chapter 11

• getaddrinfo is dealing with two different inputs: what type of socket address
structure does the caller want back and what type of records should be searched
for in the DNS.

• The address family in the hints structure provided by the caller specifies the type
of socket address structure that the caller expects to be returned. If the caller
specifies AF_INET , the function must not return any sockaddr_in6 structures
and if the caller specifies AF_INET6 , the function must not return any
sockaddr_in structures.

• Posix.1g says that specifying AF_UNSPECshall return addresses that can be used
with any protocol family that can be used with the hostname and service name.
This implies that if a host has both AAAA records and A records, the AAAA
records are returned sockaddr_in6 structures and the A records are returned
as sockaddr_in structures. It makes no sense to also return the A records as
IPv4-mapped IPv6 addresses in sockaddr_in6 structures as no additional
information is being returned: these addresses are already being returned in
sockaddr_in structures.

• This statement in Posix.1g also implies that if the AI_PASSIVE flag is specified
without a hostname, then the IPv6 wildcard address (IN6ADDR_ANY_INIT or
0::0) should be returned as a sockaddr_in6 structure along with the IPv4
wildcard address (INADDR_ANYor 0.0.0.0), returned as a sockaddr_in struc-
ture. It also makes sense to return the IPv6 wildcard address first because we
saw in Section 10.2 that an IPv6 server socket can handle both IPv6 and IPv4
clients on a dual-stack host.

• The resolver ’s RES_USE_INET6 option along with which function is called
(gethostbyname or gethostbyname2) dictates the type of records that are
searched for in the DNS (A or AAAA) and what type of addresses are returned
(IPv4, IPv6, or IPv4-mapped IPv6). We summarized this in Figure 9.5.

• The hostname can also be either an IPv6 hex string or an IPv4 dotted-decimal
string. The validity of this string depends on the address family specified by the
caller. An IPv6 hex string is not acceptable if AF_INET is specified, and an IPv4
dotted-decimal string is not acceptable if AF_INET6 is specified. But either is
acceptable if AF_UNSPECis specified, and the appropriate type of socket address
structure returned.

One could argue that if AF_INET6 is specified, then a dotted-decimal string should be
returned as an IPv4-mapped IPv6 address in a sockaddr_in6 structure. But another
way to obtain this result is to prefix the dotted-decimal string with 0::ffff: .

Figure 11.4 summarizes how we expect getaddrinfo to handle IPv4 and IPv6
addresses. The ‘‘result’’ column is what we want returned to the caller, given the vari-
ables in the first three columns. The ‘‘action’’ column is how we obtain this result and
we show the code that performs this action in our implementation of getaddrinfo in
Section 11.16.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.5 getaddrinfo Function: IPv6 and Unix Domain 281

Hostname Address family Hostname
specified specified string Result Action
by caller by caller contains

two DNS searches (note 1):
all AAAA records returned gethostbyname2(AF_INET6)

as sockaddr_in6{} s with RES_USE_INET6off
and all A records returned gethostbyname2(AF_INET)

as sockaddr_in{} s with RES_USE_INET6off

hostname

hex string one sockaddr_in6{} inet_pton(AF_INET6)

dotted decimal one sockaddr_in{} inet_pton(AF_INET)

AF_UNSPEC

all AAAA records returned gethostbyname()
as sockaddr_in6{} s, with RES_USE_INET6on

else all A records returned (note 2)
as IPv4-mapped IPv6
as sockaddr_in6{} s

hostname

hex string one sockaddr_in6{} inet_pton(AF_INET6)

dotted decimal error: EAI_ADDRFAMILY

AF_INET6

all A records returned gethostbyname()
as sockaddr_in{} s with RES_USE_INET6off

hostname

hex string error: EAI_ADDRFAMILY

dotted decimal one sockaddr_in{} inet_pton(AF_INET)

AF_INET

nonnull
hostname
string;
active or
passive

implied 0::0 one sockaddr_in6{} and inet_pton(AF_INET6)
implied 0.0.0.0 one sockaddr_in{} inet_pton(AF_INET)

AF_UNSPEC

AF_INET6 implied 0::0 one sockaddr_in6{} inet_pton(AF_INET6)

AF_INET implied 0.0.0.0 one sockaddr_in{} inet_pton(AF_INET)

null
hostname
string;
passive

implied 0::1 one sockaddr_in6{} and inet_pton(AF_INET6)
implied 127.0.0.1 one sockaddr_in{} inet_pton(AF_INET)

AF_UNSPEC

AF_INET6 implied 0::1 one sockaddr_in6{} inet_pton(AF_INET6)

AF_INET implied 127.0.0.1 one sockaddr_in{} inet_pton(AF_INET)

null
hostname
string;
active

Figure 11.4 Summary of getaddrinfo and its actions and results.

Note 1 is that when the two DNS searches are performed, either can fail (i.e., find no
records of the desired type for the hostname) but at least one must succeed. But if both
searches succeed (the hostname has both AAAA and A records), then both types of
socket address structures are returned.

Note 2 is that this DNS search must succeed, or an error is returned. But since the
RES_USE_INET6option is enabled, gethostbyname first looks for the AAAA records,
and if nothing is found, then looks for A records (Figure 9.6).

The setting and clearing of the resolver ’s RES_USE_INET6option with the scenar-
ios in notes 1 and 2 is to force the desired DNS search, given the rules in Figure 9.5.

We note that Figure 11.4 specifies only how getaddrinfo handles IPv4 and IPv6;
that is, the number of addresses returned to the caller. The actual number of addrinfo
structures returned to the caller also depends on the socket type specified and the ser-
vice name, as summarized earlier in Figure 11.2.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

282 Advanced Name and Address Conversions Chapter 11

Posix.1g says nothing specific about getaddrinfo and Unix domain sockets
(which we describe in detail in Chapter 14). Nevertheless, adding support for Unix
domain sockets to our implementation of getaddrinfo and testing applications with
these protocols is a good test for protocol independence.

Our implementation makes the following assumption: if the hostname argument for
getaddrinfo is either /local or /unix and the service name argument is an abso-
lute pathname (one that begins with a slash), Unix domain socket structures are
returned. Valid DNS hostnames cannot contain a slash and no existing IANA service
names begin with a slash (Exercise 11.5). The socket address structures returned contain
this absolute pathname, ready for a call to either bind or connect . If the caller speci-
fies the AI_CANONNAMEflag, the host’s name (Section 9.7) is returned as the canonical
name.

11.6 getaddrinfo Function: Examples

We will now show some examples of getaddrinfo using a test program that lets us
enter all the parameters: the hostname, service name, address family, socket type, and
the AI_CANONNAMEand AI_PASSIVE flags. (We do not show this test program, as it is
about 350 lines of uninteresting code. It is provided with the source code for the book,
as described in the Preface.) The test program outputs information on the variable
number of addrinfo structures that are returned, showing the arguments for a call to
socket and the address in each socket address structure.

We first show the same example as in Figure 11.1.

solaris % testga -f inet -c -h bsdi -s domain

socket(AF_INET, SOCK_STREAM, 0), ai_canonname = bsdi.kohala.com
address: 206.62.226.35.53

socket(AF_INET, SOCK_DGRAM, 0)
address: 206.62.226.35.53

socket(AF_INET, SOCK_STREAM, 0)
address: 206.62.226.66.53

socket(AF_INET, SOCK_DGRAM, 0)
address: 206.62.226.66.53

The -f inet option specifies the address family, -c says to return the canonical name,
-h bsdi specifies the hostname, and -s domain specifies the service name.

The common client scenario is to specify the address family, the socket type (the -t
option), the hostname, and the service name. The following example shows this, for a
multihomed host with six IPv4 addresses.

solaris % testga -f inet -t stream -h gateway.tuc.noao.edu -s daytime

socket(AF_INET, SOCK_STREAM, 0)
address: 140.252.101.4.13

socket(AF_INET, SOCK_STREAM, 0)
address: 140.252.102.1.13

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.6 getaddrinfo Function: Examples 283

socket(AF_INET, SOCK_STREAM, 0)
address: 140.252.104.1.13

socket(AF_INET, SOCK_STREAM, 0)
address: 140.252.3.6.13

socket(AF_INET, SOCK_STREAM, 0)
address: 140.252.4.100.13

socket(AF_INET, SOCK_STREAM, 0)
address: 140.252.1.4.13

Next we specify our host alpha , which has both a AAAA record and an A record,
without specifying the address family, and a service name of ftp , which is provided by
TCP only.

solaris % testga -h alpha -s ftp

socket(AF_INET6, SOCK_STREAM, 0)
address: 5f1b:df00:ce3e:e200:20:800:2b37:6426.21

socket(AF_INET, SOCK_STREAM, 0)
address: 206.62.226.42.21

Since we did not specify the address family, and since we ran this example on a host
that supports both IPv4 and IPv6, two structures are returned: one for IPv6 and one for
IPv4.

Next we specify the AI_PASSIVE flag (the -p option), do not specify an address
family, do not specify a hostname (implying the wildcard address), specify a port num-
ber of 8888, and do not specify a socket type.

solaris % testga -p -s 8888

socket(AF_INET6, SOCK_STREAM, 0)
address: ::.8888

socket(AF_INET6, SOCK_DGRAM, 0)
address: ::.8888

socket(AF_INET, SOCK_STREAM, 0)
address: 0.0.0.0.8888

socket(AF_INET, SOCK_DGRAM, 0)
address: 0.0.0.0.8888

Four structures are returned. Since we ran this on a host that supports IPv6 and IPv4,
without specifying an address family, getaddrinfo returns the IPv6 wildcard address
and the IPv4 wildcard address. Since we specified a port number without a socket type,
getaddrinfo returns one structure for each address specifying TCP and another struc-
ture for each address specifying UDP. The two IPv6 structures are returned before the
two IPv4 structures, because we saw in Chapter 10 that an IPv6 client or server on a
dual-stack host can communicate with either IPv6 or IPv4 peers.

As an example of Unix domain sockets, we specify /local as the hostname and
/tmp/test.1 as the service name.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

284 Advanced Name and Address Conversions Chapter 11

solaris % testga -c -p -h /local -s /tmp/test.1

socket(AF_LOCAL, SOCK_STREAM, 0), ai_canonname = solaris.kohala.com
address: /tmp/test.1

socket(AF_LOCAL, SOCK_DGRAM, 0)
address: /tmp/test.1

Since we do not specify the socket type, two structures are returned: the first for a
stream socket and the second for a datagram socket.

11.7 host_serv Function

Our first interface to getaddrinfo does not require the caller to allocate a hints struc-
ture and fill it in. Instead, the two fields of interest, the address family and the socket
type, are arguments to our host_serv function.

#include "unp.h"

struct addrinfo *host_serv(const char * hostname, const char * service,
int family, int socktype);

Returns: pointer to addrinfo structure if OK, NULLon error

Figure 11.5 shows the source code for this function.

lib/host_serv.c
1 #include "unp.h"

2 struct addrinfo *
3 host_serv(const char *host, const char *serv, int family, int socktype)
4 {
5 int n;
6 struct addrinfo hints, *res;

7 bzero(&hints, sizeof(struct addrinfo));
8 hints.ai_flags = AI_CANONNAME; /* always return canonical name */
9 hints.ai_family = family; /* AF_UNSPEC, AF_INET, AF_INET6, etc. */

10 hints.ai_socktype = socktype; /* 0, SOCK_STREAM, SOCK_DGRAM, etc. */

11 if ((n = getaddrinfo(host, serv, &hints, &res)) != 0)
12 return (NULL);

13 return (res); /* return pointer to first on linked list */
14 }

lib/host_serv.c

Figure 11.5 host_serv function.

7–13 The function initializes a hints structure, calls getaddrinfo , and returns a null
pointer if an error occurs.

We call this function from Figure 15.17 when we want to use getaddrinfo to
obtain the host and service information, but we want to establish the connection ourself.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.8 tcp_connect Function 285

11.8 tcp_connect Function

We now write two functions that use getaddrinfo to handle most scenarios for the
TCP clients and servers that we write. The first function, tcp_connect , performs the
normal client steps: create a TCP socket and connect to a server.

#include "unp.h"

int tcp_connect(const char * hostname, const char * service);

Returns: connected socket descriptor if OK, no return on error

Figure 11.6 shows the source code.

lib/tcp_connect.c
1 #include "unp.h"

2 int
3 tcp_connect(const char *host, const char *serv)
4 {
5 int sockfd, n;
6 struct addrinfo hints, *res, *ressave;

7 bzero(&hints, sizeof(struct addrinfo));
8 hints.ai_family = AF_UNSPEC;
9 hints.ai_socktype = SOCK_STREAM;

10 if ((n = getaddrinfo(host, serv, &hints, &res)) != 0)
11 err_quit("tcp_connect error for %s, %s: %s",
12 host, serv, gai_strerror(n));
13 ressave = res;

14 do {
15 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
16 if (sockfd < 0)
17 continue; /* ignore this one */

18 if (connect(sockfd, res->ai_addr, res->ai_addrlen) == 0)
19 break; /* success */

20 Close(sockfd); /* ignore this one */
21 } while ((res = res->ai_next) != NULL);

22 if (res == NULL) /* errno set from final connect() */
23 err_sys("tcp_connect error for %s, %s", host, serv);

24 freeaddrinfo(ressave);

25 return (sockfd);
26 }

lib/tcp_connect.c

Figure 11.6 tcp_connect function: perform normal client steps.

Call getaddrinfo

7–13 getaddrinfo is called once and we specify the address family as AF_UNSPECand
the socket type as SOCK_STREAM.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

286 Advanced Name and Address Conversions Chapter 11

Tr y each addrinfo structure until success or end of list

14–25 Each returned IP address is then tried: socket and connect are called. It is not a
fatal error for socket to fail, as this could happen if an IPv6 address were returned but
the host kernel does not support IPv6. If connect succeeds, a break is made out of
the loop. Otherwise, when all the addresses have been tried, the loop also terminates.
freeaddrinfo returns all the dynamic memory.

This function (and our other functions that provide a simpler interface to
getaddrinfo in the following sections) terminates if either getaddrinfo fails, or if
no call to connect succeeds. The only return is upon success. It would be hard to
return an error code (one of the EAI_ xxx constants) without adding another argument.
This means that our wrapper function is trivial:

int
Tcp_connect(const char *host, const char *serv)
{

return(tcp_connect(host, serv));
}

Nevertheless, we still call our wrapper function, instead of tcp_connect , to maintain
consistency with the remainder of the text.

The problem with the return value is that descriptors are nonnegative but we do not know
whether the EAI_ xxx values are positive or negative. If these values were positive, we could
return the negative of these values if getaddrinfo fails, but we also have to return some
other negative value to indicate that all the structures were tried without success.

Example: Daytime Client

Figure 11.7 shows our daytime client from Figure 1.5 recoded to use tcp_connect .

Command -line arguments

9–10 We now require a second command-line argument to specify either the service
name or the port number, which allows our program to connect to other ports.

Connect to server

11 All of the socket code for this client is now performed by tcp_connect .

Print server’s address

12–15 We call getpeername to fetch the server’s protocol address and print it. We do
this to verify the protocol being used in the examples we are about to show.

Note that tcp_connect does not return the size of the socket address structure
that was used for the connect . We could have added a pointer argument to return this
value, but one design goal for this function was to reduce the number of arguments,
compared to getaddrinfo . What we do instead is define the constant MAXSOCKADDR
in our unp.h header to be the size of the largest socket address structure. This is nor-
mally the size of a Unix domain socket address structure (Section 14.2), just over 100
bytes. We allocate room for a structure of this size and this is what getpeername fills
in.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.8 tcp_connect Function 287

names/daytimetcpcli.c
1 #include "unp.h"

2 int
3 main(int argc, char **argv)
4 {
5 int sockfd, n;
6 char recvline[MAXLINE + 1];
7 socklen_t len;
8 struct sockaddr *sa;

9 if (argc != 3)
10 err_quit("usage: daytimetcpcli <hostname/IPaddress> <service/port#>");

11 sockfd = Tcp_connect(argv[1], argv[2]);

12 sa = Malloc(MAXSOCKADDR);
13 len = MAXSOCKADDR;
14 Getpeername(sockfd, sa, &len);
15 printf("connected to %s\n", Sock_ntop_host(sa, len));

16 while ((n = Read(sockfd, recvline, MAXLINE)) > 0) {
17 recvline[n] = 0; /* null terminate */
18 Fputs(recvline, stdout);
19 }
20 exit(0);
21 }

names/daytimetcpcli.c

Figure 11.7 Daytime client recoded to use getaddrinfo .

We call malloc for this structure, instead of allocating it as

char sockaddr[MAXSOCKADDR];

for alignment reasons. malloc always returns a pointer with the strictest alignment required
by the system, while a char array could be allocated on an odd-byte boundary, which could
be a problem for the IP address or port number fields in the socket address structure. Another
way to handle this potential alignment problem was shown in Figure 4.19 using a union .

This version of our client works with both IPv4 and IPv6, while the version in Fig-
ure 1.5 worked only with IPv4 and the version in Figure 1.6 worked only with IPv6.
You should also compare our new version with Figure E.14, which we coded to use
gethostbyname and getservbyname to support both IPv4 and IPv6.

We first specify the name of a host that supports only IPv4.

solaris % daytimetcpcli bsdi daytime
connected to 206.62.226.35
Fri May 30 12:33:32 1997

Next we specify the name of a host that supports both IPv4 and IPv6.

solaris % daytimetcpcli aix daytime
connected to 5f1b:df00:ce3e:e200:20:800:5afc:2b36
Fri May 30 12:43:43 1997

© Copyright 1998 by Prentice Hall PTR, All rights reserved

288 Advanced Name and Address Conversions Chapter 11

The IPv6 address is used because the host has both a AAAA record and an A record,
and as noted in Figure 11.4, since tcp_connect sets the address family to AF_UNSPEC,
AAAA records are searched for first, and only if this fails is a search made for an A
record.

In the next example we force the use of the IPv4 address by specifying the hostname
with our -4 suffix, which we noted in Section 9.2 is our convention for the hostname
with only A records.

solaris % daytimetcpcli aix-4 daytime
connected to 206.62.226.43
Fri May 30 12:43:48 1997

11.9 tcp_listen Function

Our next function, tcp_listen , performs the normal TCP server steps: create a TCP
socket, bind the server’s well-known port, and allow incoming connection requests to
be accepted. Figure 11.8 shows the source code.

#include "unp.h"

int tcp_listen(const char * hostname, const char * service, socklen_t * lenptr);

Returns: connected socket descriptor if OK, no return on error

Call getaddrinfo

8–15 We initialize an addrinfo structure with our hints: AI_PASSIVE , since this func-
tion is for a server, AF_UNSPECfor the address family, and SOCK_STREAM. Recall from
Figure 11.4 that if a hostname is not specified (which is common for a server that wants
to bind the wildcard address), the AI_PASSIVE and AF_UNSPEChints will cause two
socket address structures to be returned: the first for IPv6 and the next for IPv4 (assum-
ing a dual-stack host).

Create socket and bind address

16–24 The socket and bind functions are called. If either call fails we just ignore this
addrinfo structure and move on to the next one. As stated in Section 7.5, we always
set the SO_REUSEADDRsocket option for a TCP server.

Check for failure

25–26 If all the calls to socked and bind failed, we print an error and terminate. As with
our tcp_connect function in the previous section, we do not try to return an error
from this function.

27 The socket is turned into a listening socket by listen .

Return size of socket address structure

28–31 If the addrlenp argument is nonnull, we return the size of the protocol addresses
through this pointer. This allows the caller to allocate memory for a socket address
structure to obtain the client’s protocol address from accept . (See Exercise 11.1 also.)

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.9 tcp_listen Function 289

lib/tcp_listen.c
1 #include "unp.h"

2 int
3 tcp_listen(const char *host, const char *serv, socklen_t *addrlenp)
4 {
5 int listenfd, n;
6 const int on = 1;
7 struct addrinfo hints, *res, *ressave;

8 bzero(&hints, sizeof(struct addrinfo));
9 hints.ai_flags = AI_PASSIVE;

10 hints.ai_family = AF_UNSPEC;
11 hints.ai_socktype = SOCK_STREAM;

12 if ((n = getaddrinfo(host, serv, &hints, &res)) != 0)
13 err_quit("tcp_listen error for %s, %s: %s",
14 host, serv, gai_strerror(n));
15 ressave = res;

16 do {
17 listenfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
18 if (listenfd < 0)
19 continue; /* error, try next one */

20 Setsockopt(listenfd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on));
21 if (bind(listenfd, res->ai_addr, res->ai_addrlen) == 0)
22 break; /* success */

23 Close(listenfd); /* bind error, close and try next one */
24 } while ((res = res->ai_next) != NULL);

25 if (res == NULL) /* errno from final socket() or bind() */
26 err_sys("tcp_listen error for %s, %s", host, serv);

27 Listen(listenfd, LISTENQ);

28 if (addrlenp)
29 *addrlenp = res->ai_addrlen; /* return size of protocol address */

30 freeaddrinfo(ressave);

31 return (listenfd);
32 }

lib/tcp_listen.c

Figure 11.8 tcp_listen function: perform normal server steps.

Example: Daytime Server

Figure 11.9 shows our daytime server from Figure 4.11 recoded to use tcp_listen .

Require service name or port number as command -line argument

11–12 We require a command-line argument to specify either the service name or the port
number. This makes it easier to test our server, since binding port 13 for the daytime
server requires superuser privileges.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

290 Advanced Name and Address Conversions Chapter 11

names/daytimetcpsrv1.c
1 #include "unp.h"
2 #include <time.h>

3 int
4 main(int argc, char **argv)
5 {
6 int listenfd, connfd;
7 socklen_t addrlen, len;
8 char buff[MAXLINE];
9 time_t ticks;

10 struct sockaddr *cliaddr;

11 if (argc != 2)
12 err_quit("usage: daytimetcpsrv1 <service or port#>");

13 listenfd = Tcp_listen(NULL, argv[1], &addrlen);

14 cliaddr = Malloc(addrlen);

15 for (; ;) {
16 len = addrlen;
17 connfd = Accept(listenfd, cliaddr, &len);
18 printf("connection from %s\n", Sock_ntop(cliaddr, len));

19 ticks = time(NULL);
20 snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));
21 Write(connfd, buff, strlen(buff));

22 Close(connfd);
23 }
24 }

names/daytimetcpsrv1.c

Figure 11.9 Daytime server recoded to use getaddrinfo .

Create listening socket

13–14 tcp_listen creates the listening socket and malloc allocates a buffer to hold the
client’s address.

Ser ver loop

15–23 accept waits for each client connection. We print the client address by calling
sock_ntop . In the case of either IPv4 or IPv6, this function prints the IP address and
port number. We could use the function getnameinfo (described in Section 11.13) to
try to obtain the hostname of the client, but that involves a PTR query in the DNS,
which can take some time, especially if the PTR query fails. Section 14.8 of TCPv3 notes
that on a busy Web server almost 25% of all clients connecting to that server did not
have PTR records in the DNS. Since we do not want a server (especially an iterative
server) to wait seconds for a PTR query, we just print the IP address and port.

Example: Daytime Server with Protocol Specification

There is a slight problem with Figure 11.9: the first argument to tcp_listen is a null
pointer, which combined with the address family of AF_UNSPECthat tcp_listen

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.9 tcp_listen Function 291

specifies might cause getaddrinfo to return a socket address structure with an
address family other than what is desired. For example, the first socket address struc-
ture returned will be for IPv6 on a dual-stack host (Figure 11.4) but we might want our
server to handle only IPv4.

Clients do not have this problem, since the client must always specify either an IP
address or a hostname. Client applications normally allow the user to enter this as a
command-line argument. This gives us the opportunity to specify a hostname that is
associated with a particular type of IP address (recall our -4 and -6 hostnames in Sec-
tion 9.2), or to specify either an IPv4 dotted-decimal string (forcing IPv4) or an IPv6 hex
string (forcing IPv6).

But there is a simple technique for servers that lets us force a given protocol upon a
server, either IPv4 or IPv6: allow the user to enter either an IP address or a hostname as
a command-line argument to the program and pass this to getaddrinfo . In the case
of an IP address, an IPv4 dotted-decimal string differs from an IPv6 hex string. The fol-
lowing calls to inet_pton either fail or succeed, as indicated.

inet_pton(AF_INET, "0.0.0.0", &foo); /* succeeds */
inet_pton(AF_INET, "0::0", &foo); /* fails */
inet_pton(AF_INET6, "0.0.0.0", &foo); /* fails */
inet_pton(AF_INET6, "0::0", &foo); /* succeeds */

Therefore, if we change our servers to accept an optional argument, then if we enter

% server

it defaults to IPv6 on a dual-stack host, but entering

% server 0.0.0.0

explicitly specifies IPv4 and

% server 0::0

explicitly specifies IPv6.

Figure 11.10 shows this final version of our daytime server.

Handle command -line arguments

11–16 The only change from Figure 11.9 is the handling of the command-line arguments,
allowing the user to specify either a hostname or an IP address for the server to bind, in
addition to a service name or port.

We first start this server with an IPv4 socket and then connect to the server from
clients on two other hosts on the local subnet.

solaris % daytimetcpsrv2 0.0.0.0 9999
connection from 206.62.226.36.32789
connection from 206.62.226.35.1389

But now we start the server with an IPv6 socket.

solaris % daytimetcpsrv2 0::0 9999
connection from 5f1b:df00:ce3e:e200:20:800:2003:f642.32799
connection from 5f1b:df00:ce3e:e200:20:800:2b37:6426.1026

© Copyright 1998 by Prentice Hall PTR, All rights reserved

292 Advanced Name and Address Conversions Chapter 11

names/daytimetcpsrv2.c
1 #include "unp.h"
2 #include <time.h>

3 int
4 main(int argc, char **argv)
5 {
6 int listenfd, connfd;
7 socklen_t addrlen, len;
8 struct sockaddr *cliaddr;
9 char buff[MAXLINE];

10 time_t ticks;

11 if (argc == 2)
12 listenfd = Tcp_listen(NULL, argv[1], &addrlen);
13 else if (argc == 3)
14 listenfd = Tcp_listen(argv[1], argv[2], &addrlen);
15 else
16 err_quit("usage: daytimetcpsrv2 [<host>] <service or port>");

17 cliaddr = Malloc(addrlen);

18 for (; ;) {
19 len = addrlen;
20 connfd = Accept(listenfd, cliaddr, &len);
21 printf("connection from %s\n", Sock_ntop(cliaddr, len));

22 ticks = time(NULL);
23 snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));
24 Write(connfd, buff, strlen(buff));

25 Close(connfd);
26 }
27 }

names/daytimetcpsrv2.c

Figure 11.10 Protocol-independent daytime server that uses getaddrinfo .

connection from ::ffff:206.62.226.36.32792
connection from ::ffff:206.62.226.35.1390

The first connection is from the host sunos5 using IPv6 and the second is from the host
alpha using IPv6. The next two connections are from the hosts sunos5 and bsdi , but
using IPv4, not IPv6. We can tell this because the client’s addresses returned by accept
are both IPv4-mapped IPv6 addresses.

What we have just shown is that an IPv6 server running on a dual-stack host can
handle either IPv4 or IPv6 clients. The IPv4 client addresses are passed to the IPv6
server as IPv4-mapped IPv6 address, as we discussed in Section 10.2.

This server, along with the client in Figure 11.7, also work with Unix domain sock-
ets (Chapter 14) since our implementation of getaddrinfo in Section 11.16 supports
Unix domain sockets. For example, we start the server as

solaris % daytimetcpsrv2 /local /tmp/rendezvous

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.10 udp_client Function 293

where the pathname /tmp/rendezvous is an arbitrary pathname we choose for the
server to bind and to which the client connects. We then start the client on the same
host, specifying /local as the hostname and /tmp/rendezvous as the service name.

solaris % daytimetcpcli /tmp/rendezvous 0
connected to /tmp/rendezvous
Fri May 30 16:31:37 1997

11.10 udp_client Function

Our functions that provide a simpler interface to getaddrinfo change with UDP
because we provide one client function that creates an unconnected UDP socket, and
another in the next section that creates a connected UDP socket.

#include "unp.h"

int udp_client(const char * hostname, const char * service,
void ** saptr, socklen_t * lenp);

Returns: unconnected socket descriptor if OK, no return on error

This function creates an unconnected UDP socket, returning three items. First, the
return value is the socket descriptor. Second, saptr is the address of a pointer (declared
by the caller) to a socket address structure (allocated dynamically by udp_client) and
in that structure the function stores the destination IP address and port for future calls
to sendto . The size of that socket address structure is returned in the variable pointed
to by lenp. This final argument cannot be a null pointer (as we allowed for the final
argument to tcp_listen) because the length of the socket address structure is
required in any calls to sendto and recvfrom .

saptr should be declared as struct sockaddr ** . We use the void ** datatype because
we define another version of this function that uses XTI in Section 31.3 and it uses this argu-
ment to contain the address of a pointer to a different type of structure. This means our calls to
this function must contain the cast (void **) .

Figure 11.11 shows the source code for this function.
getaddrinfo converts the hostname and service arguments. A datagram socket is

created. Memory is allocated for one socket address structure and the socket address
structure corresponding to the socket that was created is copied into the memory.

Example: Protocol -Independent Daytime Client

We now recode our daytime client from Figure 11.7 to use UDP and our udp_client
function. Figure 11.12 shows the protocol-independent source code.

11–16 We call our udp_client function and then print the IP address and port of the
server to which we will send the UDP datagram. We send a 1-byte datagram and then
read and print the reply.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

294 Advanced Name and Address Conversions Chapter 11

lib/udp_client.c
1 #include "unp.h"

2 int
3 udp_client(const char *host, const char *serv, void **saptr, socklen_t *lenp)
4 {
5 int sockfd, n;
6 struct addrinfo hints, *res, *ressave;

7 bzero(&hints, sizeof(struct addrinfo));
8 hints.ai_family = AF_UNSPEC;
9 hints.ai_socktype = SOCK_DGRAM;

10 if ((n = getaddrinfo(host, serv, &hints, &res)) != 0)
11 err_quit("udp_client error for %s, %s: %s",
12 host, serv, gai_strerror(n));
13 ressave = res;

14 do {
15 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
16 if (sockfd >= 0)
17 break; /* success */
18 } while ((res = res->ai_next) != NULL);

19 if (res == NULL) /* errno set from final socket() */
20 err_sys("udp_client error for %s, %s", host, serv);

21 *saptr = Malloc(res->ai_addrlen);
22 memcpy(*saptr, res->ai_addr, res->ai_addrlen);
23 *lenp = res->ai_addrlen;

24 freeaddrinfo(ressave);

25 return (sockfd);
26 }

lib/udp_client.c

Figure 11.11 udp_client function: create an unconnected UDP socket.

We need to send only a 0-byte UDP datagram, as what triggers the daytime server’s response
is just the arrival of a datagram, regardless of its length and contents. But many SVR4 imple-
mentations do not allow a 0-length UDP datagram.

We run our client specifying a hostname that has a AAAA record and an A record.
Since the structure with the AAAA record is returned first by getaddrinfo , an IPv6
socket is created.

solaris % daytimeudpcli1 aix daytime
sending to 5f1b:df00:ce3e:e200:20:800:5afc:2b36
Sat May 31 08:13:34 1997

Next we specify the dotted-decimal address of the same host, resulting in an IPv4
socket.

solaris % daytimeudpcli1 206.62.226.43 daytime
sending to 206.62.226.43
Sat May 31 08:14:02 1997

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.11 udp_connect Function 295

names/daytimeudpcli1.c
1 #include "unp.h"

2 int
3 main(int argc, char **argv)
4 {
5 int sockfd, n;
6 char recvline[MAXLINE + 1];
7 socklen_t salen;
8 struct sockaddr *sa;

9 if (argc != 3)
10 err_quit("usage: daytimeudpcli1 <hostname/IPaddress> <service/port#>");

11 sockfd = Udp_client(argv[1], argv[2], (void **) &sa, &salen);

12 printf("sending to %s\n", Sock_ntop_host(sa, salen));

13 Sendto(sockfd, "", 1, 0, sa, salen); /* send 1-byte datagram */

14 n = Recvfrom(sockfd, recvline, MAXLINE, 0, NULL, NULL);
15 recvline[n] = 0; /* null terminate */
16 Fputs(recvline, stdout);

17 exit(0);
18 }

names/daytimeudpcli1.c

Figure 11.12 UDP daytime client using our udp_client function.

11.11 udp_connect Function

Our udp_connect function creates a connected UDP socket.

#include "unp.h"

int udp_connect(const char * hostname, const char * service);

Returns: connected socket descriptor if OK, no return on error

With a connected UDP socket the final two arguments required by udp_client are no
longer needed. The caller can call write instead of sendto , so our function need not
return a socket address structure and its length.

Figure 11.13 shows the source code.
This function is nearly identical to tcp_connect . One difference, however, is that

the call to connect with a UDP socket does not send anything to the peer. If some-
thing is wrong (the peer is unreachable or there is no server at the specified port), the
caller does not discover that until it sends a datagram to the peer.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

296 Advanced Name and Address Conversions Chapter 11

lib/udp_connect.c
1 #include "unp.h"

2 int
3 udp_connect(const char *host, const char *serv)
4 {
5 int sockfd, n;
6 struct addrinfo hints, *res, *ressave;

7 bzero(&hints, sizeof(struct addrinfo));
8 hints.ai_family = AF_UNSPEC;
9 hints.ai_socktype = SOCK_DGRAM;

10 if ((n = getaddrinfo(host, serv, &hints, &res)) != 0)
11 err_quit("udp_connect error for %s, %s: %s",
12 host, serv, gai_strerror(n));
13 ressave = res;

14 do {
15 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
16 if (sockfd < 0)
17 continue; /* ignore this one */

18 if (connect(sockfd, res->ai_addr, res->ai_addrlen) == 0)
19 break; /* success */

20 Close(sockfd); /* ignore this one */
21 } while ((res = res->ai_next) != NULL);

22 if (res == NULL) /* errno set from final connect() */
23 err_sys("udp_connect error for %s, %s", host, serv);

24 freeaddrinfo(ressave);

25 return (sockfd);
26 }

lib/udp_connect.c

Figure 11.13 udp_connect function: create a connected UDP socket.

11.12 udp_server Function

Our final UDP function that provides a simpler interface to getaddrinfo is
udp_server .

#include "unp.h"

int udp_server(const char * hostname, const char * service, socklen_t * lenptr);

Returns: unconnected socket descriptor if OK, no return on error

The arguments are the same as for tcp_listen : an optional hostname, a required service
(so its port number can be bound), and an optional pointer to a variable in which the
size of the socket address structure is returned.

Figure 11.14 shows the source code.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.12 udp_server Function 297

lib/udp_server.c
1 #include "unp.h"

2 int
3 udp_server(const char *host, const char *serv, socklen_t *addrlenp)
4 {
5 int sockfd, n;
6 struct addrinfo hints, *res, *ressave;

7 bzero(&hints, sizeof(struct addrinfo));
8 hints.ai_flags = AI_PASSIVE;
9 hints.ai_family = AF_UNSPEC;

10 hints.ai_socktype = SOCK_DGRAM;

11 if ((n = getaddrinfo(host, serv, &hints, &res)) != 0)
12 err_quit("udp_server error for %s, %s: %s",
13 host, serv, gai_strerror(n));
14 ressave = res;

15 do {
16 sockfd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
17 if (sockfd < 0)
18 continue; /* error, try next one */

19 if (bind(sockfd, res->ai_addr, res->ai_addrlen) == 0)
20 break; /* success */

21 Close(sockfd); /* bind error, close and try next one */
22 } while ((res = res->ai_next) != NULL);

23 if (res == NULL) /* errno from final socket() or bind() */
24 err_sys("udp_server error for %s, %s", host, serv);

25 if (addrlenp)
26 *addrlenp = res->ai_addrlen; /* return size of protocol address */

27 freeaddrinfo(ressave);

28 return (sockfd);
29 }

lib/udp_server.c

Figure 11.14 udp_server function: create an unconnected socket for a UDP server.

This function is nearly identical to tcp_listen , but without the call to listen .
We set the address family to AF_UNSPECbut the caller can use the same technique that
we described with Figure 11.10 to force a particular protocol (IPv4 or IPv6).

We do not set the SO_REUSEADDRsocket option for the UDP socket because this
socket option can allow multiple sockets to bind the same UDP port on hosts that sup-
port multicasting, as we described in Section 7.5. Since there is nothing like TCP’s
TIME_WAIT state for a UDP socket, there is no need to set this socket option when the
server is started.

Example: Protocol -Independent Daytime Server

Figure 11.15 shows our daytime server, modified from Figure 11.10 to use UDP.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

298 Advanced Name and Address Conversions Chapter 11

names/daytimeudpsrv2.c
1 #include "unp.h"
2 #include <time.h>

3 int
4 main(int argc, char **argv)
5 {
6 int sockfd;
7 ssize_t n;
8 char buff[MAXLINE];
9 time_t ticks;

10 socklen_t addrlen, len;
11 struct sockaddr *cliaddr;

12 if (argc == 2)
13 sockfd = Udp_server(NULL, argv[1], &addrlen);
14 else if (argc == 3)
15 sockfd = Udp_server(argv[1], argv[2], &addrlen);
16 else
17 err_quit("usage: daytimeudpsrv [<host>] <service or port>");

18 cliaddr = Malloc(addrlen);

19 for (; ;) {
20 len = addrlen;
21 n = Recvfrom(sockfd, buff, MAXLINE, 0, cliaddr, &len);
22 printf("datagram from %s\n", Sock_ntop(cliaddr, len));

23 ticks = time(NULL);
24 snprintf(buff, sizeof(buff), "%.24s\r\n", ctime(&ticks));
25 Sendto(sockfd, buff, strlen(buff), 0, cliaddr, len);
26 }
27 }

names/daytimeudpsrv2.c

Figure 11.15 Protocol independent UDP daytime server.

11.13 getnameinfo Function

This function is the complement of getaddrinfo : it takes a socket address and returns
a character string describing the host and another character string describing the ser-
vice. This function provides this information in a protocol-independent fashion; that is,
the caller does not care what type of protocol address is contained in the socket address
structure, as that detail is handled by the function.

#include <netdb.h>

int getnameinfo(const struct sockaddr * sockaddr, socklen_t addrlen,
char * host, size_t hostlen,
char * serv, size_t servlen, int flags);

Returns: 0 if OK, −1 on error

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.13 getnameinfo Function 299

sockaddr points to the socket address structure containing the protocol address to be con-
verted into a human-readable string, and addrlen is the length of this structure. This
structure and its length are normally returned by either accept , recvfrom ,
getsockname , or getpeername .

The caller allocates space for the two human-readable strings: host and hostlen spec-
ify the host string, and serv and servlen specify the service string. If the caller does not
want the host string returned, a hostlen of 0 is specified. Similarly a servlen of 0 specifies
not to return information on the service. To help allocate arrays to hold these two
strings, the constants shown in Figure 11.16 are defined by including the <netdb.h>
header.

Constant Description Value

NI_MAXHOST maximum size of returned host string 1025
NI_MAXSERV maximum size of returned service string 32

Figure 11.16 Constants for returned string sizes from getnameinfo .

The difference between sock_ntop and getnameinfo is that the former does not
involve the DNS and just returns a printable version of the IP address and port number.
The latter normally tries to obtain a name for both the host and service.

Figure 11.17 shows the five flags that can be specified to change the operation of
getnameinfo .

Constant Description

NI_DGRAM datagram service
NI_NAMEREQD return an error if name cannot be resolved from address
NI_NOFQDN return only hostname portion of FQDN
NI_NUMERICHOST return numeric string for hostname
NI_NUMERICSERV return numeric string for service name

Figure 11.17 flags for getnameinfo .

NI_DGRAMshould be specified when the caller knows it is dealing with a datagram
socket. The reason is that given only the IP address and port number in the socket
address structure, getnameinfo cannot determine the protocol (TCP or UDP). There
exist a few port numbers that are used for one service with TCP and a completely differ-
ent service with UDP. An example is port 514, which is the rsh service with TCP, but
the syslog service with UDP.

NI_NAMEREQDcauses an error to be returned if the hostname cannot be resolved
using the DNS. This can be used by servers that require the client’s IP address be
mapped into a hostname. These servers then take this returned hostname and call
gethostbyname and verify that one of the returned addresses is the address in the
socket address structure.

NI_NOFQDNcauses the returned hostname to be truncated at the first period. For
example, if the IP address in the socket address structure were 206.62.226.42,
gethostbyaddr would return a name of alpha.kohala.com . But if this flag is spec-
ified to getnameinfo , it returns the hostname as just alpha .

© Copyright 1998 by Prentice Hall PTR, All rights reserved

300 Advanced Name and Address Conversions Chapter 11

NI_NUMERICHOSTtells getnameinfo not to call the DNS (which can take time).
Instead the numeric representation of the IP address is returned, probably by calling
inet_ntop . Similarly the NI_NUMERICSERVspecifies that the decimal port number is
to be returned, instead of looking up the service name. Servers should normally specify
NI_NUMERICSERVbecause the client port numbers normally have no associated service
name — they are ephemeral ports.

The logical OR of multiple flags can be specified if they make sense together (e.g.,
NI_DGRAMand NI_NUMERICHOST), while other combinations make no sense (e.g.,
NI_NAMEREQDand NI_NUMERICHOST).

getnameinfo was overlooked by Posix.1g but is specified in RFC 2133 [Gilligan et al. 1997].

11.14 Reentrant Functions

The gethostbyname function from Section 9.3 presents an interesting problem that we
have not yet examined in the text: it is not reentrant. We will encounter this problem in
general when we deal with threads in Chapter 23, but it is interesting to examine the
problem now (without having to deal with the concept of threads) and to see how to fix
it.

First let us look at how the function works. If we look at its source code (which is
easy since the source code for the entire BIND release is publicly available), we see that
one file contains both gethostbyname and gethostbyaddr , and the file has the fol-
lowing general outline:

static struct hostent host; /* result stored here */

struct hostent *
gethostbyname(const char *hostname)
{

return(gethostbyname2(hostname, family)); /* Figure 9.6 */
}

struct hostent *
gethostbyname2(const char *hostname, int family)
{

/* call DNS functions for A or AAAA query */

/* fill in host structure */

return(&host);
}

struct hostent *
gethostbyaddr(const char *addr, size_t len, int family)
{

/* call DNS functions for PTR query in in-addr.arpa domain */

/* fill in host structure */

return(&host);
}

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.14 Reentrant Functions 301

We highlight the static storage class specifier of the result structure, because that is
the basic problem. The fact that these three functions share a single host variable pre-
sents yet another problem that we discussed in Exercise 9.1. (Recall from Figure 9.6 that
gethostbyname2 is new with the IPv6 support in BIND 4.9.4. We will ignore the fact
that gethostbyname2 is involved when we call gethostbyname , as that doesn’t
affect this discussion.)

The reentrancy problem can occur in a normal Unix process that calls
gethostbyname or gethostbyaddr from both the main flow of control and from a
signal handler. When the signal handler is called (say it is a SIGALRMsignal that is gen-
erated once a second), the main flow of control of the process is temporarily stopped
and the signal handling function is called. Consider the following.

main()
{

struct hostent *hptr;

...
signal(SIGALRM, sig_alrm);

...
hptr = gethostbyname(...);
...

}

void
sig_alrm(int signo)
{

struct hostent *hptr;

...
hptr = gethostbyname(...);
...

}

If the main flow of control is in the middle of gethostbyname when it is temporarily
stopped (say the function has filled in the host variable and is about to return), and the
signal handler then calls gethostbyname , since only one copy of the variable host
exists in the process, it is reused. This overwrites the values that were calculated for the
call from the main flow of control with the values calculated for the call from the signal
handler.

If we look at the name and address conversion functions presented in this chapter
and Chapter 9, along with the inet_ XXX functions from Chapter 4, we note the fol-
lowing:

• Historically, gethostbyname , gethostbyname2 , gethostbyaddr ,
getservbyname , and getservbyport are not reentrant because all return a
pointer to a static structure.

Some implementations that support threads (Solaris 2.x) provide reentrant ver-
sions of these four functions with names ending with the _r suffix, which we
describe in the next section.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

302 Advanced Name and Address Conversions Chapter 11

Alternately, some implementations that support threads (Digital Unix 4.0 and
HP-UX 10.30) provide reentrant versions of these functions using thread-specific
data.

• inet_pton and inet_ntop are always reentrant.

• Historically inet_ntoa is not reentrant but some implementations that support
threads provide a reentrant version that uses thread-specific data.

• getaddrinfo is reentrant only if it calls reentrant functions itself; that is, if it
calls reentrant versions of gethostbyname for the hostname, and
getservbyname for the service name. One reason that all the memory for the
results is dynamically allocated is to allow it to be reentrant.

• getnameinfo is reentrant only if it calls reentrant functions itself; that is, if it
calls reentrant versions of gethostbyaddr to obtain the hostname, and
getservbyport to obtain the service name. Notice that both result strings (for
the hostname and the service name) are allocated by the caller, to allow this
reentrancy.

A similar problem occurs with the variable errno . Historically there has been a
single copy of this integer variable per process. If the process makes a system call that
returns an error, an integer error code is stored into this variable. For example, when
the function named close in the standard C library is called, it might execute some-
thing like the following pseudocode:

• put the argument to the system call (an integer descriptor) into a register
• put a value in another register indicating the close system call is being called
• invoke the system call (switch to the kernel with a special instruction)
• test the value of a register to see if an error occurred
• if no error, return (0)
• store the value of some other register into errno
• return(-1)

First notice that if an error does not occur, the value of errno is not changed. That is
why we cannot look at the value of errno unless we know that an error has occurred
(normally indicated by the function returning −1).

Assume the program tests the return value of the close function and then prints
the value of errno if an error occurred, as in the following:

if (close(fd) < 0) {
fprintf(stderr, "close error, errno = %d\n", errno)
exit(1);

}

There is a small window of time between the storing of the error code into errno when
the system call returns, and the printing of this value by the program, during which
another thread of execution within this process (i.e., a signal handler) can change the
value of errno . For example, if, when the signal handler is called, the main flow of
control is between the close and the fprintf and the signal handler calls some other
system call that returns an error (say write), then the errno value stored from the

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.15 gethostbyname_r and gethostbyaddr_r Functions 303

write system call overwrites the value stored by the close system call.
In looking at these two problems with regard to signal handlers, one solution to the

problem with gethostbyname (returning a pointer to a static variable) is to not call
nonreentrant functions from a signal handler. The problem with errno (a single global
variable that can be changed by the signal handler) can be avoided by coding the signal
handler to save and restore the value of errno in the signal handler, as follows:

void
sig_alrm(int signo)
{

int errno_save;

errno_save = errno; /* save its value on entry *
if (write(...) != nbytes)

fprintf(stderr, "write error, errno = %d\n", errno);
errno = errno_save; /* restore its value on return */

}

In this example code we also call fprintf , a standard I/O function, from the signal
handler. This is yet another reentrancy problem because many versions of the standard
I/O library are nonreentrant: standard I/O functions should not be called from signal
handlers.

We revisit this problem of reentrancy in Chapter 23 and we will see how threads
handle the problem of the errno variable. The next section describes some reentrant
versions of the hostname functions.

11.15 gethostbyname_r and gethostbyaddr_r Functions

There are two ways to make a nonreentrant function such as gethostbyname reen-
trant.

1. Instead of filling in and returning a static structure, the caller allocates the struc-
ture and the reentrant function fills in the caller’s structure. This is the tech-
nique used in going from the nonreentrant gethostbyname to the reentrant
gethostbyname_r . But this solution gets more complicated because not only
must the caller provide the hostent structure to fill in, but this structure also
points to other information: the canonical name, the array of alias pointers, the
alias strings, the array of address pointers, and the addresses (e.g., Figure 9.2).
The caller must provide one large buffer that is used for this additional informa-
tion and the hostent structure that is filled in then contains numerous pointers
into this other buffer. This adds at least three arguments to the function: a
pointer to the hostent structure to fill in, a pointer to the buffer to use for all
the other information, and the size of this buffer. A fourth additional argument
is also required, a pointer to an integer in which an error code can be stored,
since the global integer h_errno can no longer be used. (The global integer
h_errno presents the same reentrancy problem that we described with errno .)

This technique is also used by getnameinfo and inet_ntop .

© Copyright 1998 by Prentice Hall PTR, All rights reserved

304 Advanced Name and Address Conversions Chapter 11

2. The reentrant function calls malloc and dynamically allocates the memory.
This is the technique used by getaddrinfo . The problem with this approach
is that the application calling this function must also call freeaddrinfo to free
the dynamic memory. If the free function is not called, a memory leak occurs:
each time the process calls the function that allocates the memory, the memory
use of the process increases. If the process runs for a long time (a common trait
of network servers), the memory usage just grows and grows over time.

We now discuss the Solaris 2.x reentrant functions for name-to-address and
address-to-name resolution.

#include <netdb.h>

struct hostent *gethostbyname_r(const char * hostname,
struct hostent * result,
char * buf, int buflen, int * h_errnop);

struct hostent *gethostbyaddr_r(const char * addr, int len, int type,
struct hostent * result,
char * buf, int buflen, int * h_errnop);

Both return: nonnull pointer if OK, NULLon error

Four additional arguments are required for each function. result is a hostent structure
allocated by the caller which is filled in by the function. On success this pointer is also
the return value of the function.

buf is a buffer allocated by the caller and buflen is its size. This buffer will contain
the canonical hostname, the alias pointers, the alias strings, the address pointers, and
the actual addresses. All the pointers in the structure pointed to by result point into this
buffer. How big should this buffer be? Unfortunately all that most manual pages say is
something vague like ‘‘The buffer must be large enough to hold all of the data associ-
ated with the host entry.’’ Current implementations of gethostbyname can return up
to 35 alias pointers, 35 address pointers, and internally use an 8192-byte buffer to hold
the alias names and addresses. So a buffer size of 8192 bytes should be adequate.

If an error occurs, the error code is returned through the h_errnop pointer, and not
through the global h_errno .

Unfortunately this problem of reentrancy is even worse than it appears. First, there is no stan-
dard regarding reentrancy and gethostbyname and gethostbyaddr . Posix.1g specifies
both functions but says nothing about thread safety. Unix 98 just says that these two functions
need not be thread-safe.

Second, there is no standard for the _r functions. What we have shown in this section (for
example purposes) are two of the _r functions provided by Solaris 2.x. But Digital Unix 4.0
and HP-UX 10.30 have versions of these functions with different arguments. The first two
arguments for gethostbyname_r are the same as the Solaris version, but the remaining three
arguments for the Solaris version are combined into a new hostent_data structure (which
must be allocated by the caller), and a pointer to this structure is the third and final argument.
The normal functions gethostbyname and gethostbyaddr in Digital Unix 4.0 and HP-UX

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 305

10.30 are reentrant, by using thread-specific data (Section 23.5). An interesting history of the
development of the Solaris 2.x _r functions is in [Maslen 1997].

Lastly, while a reentrant version of gethostbyname may provide safety from different
threads calling it at the same time, this says nothing about the reentrancy of the underlying
resolver functions. As of this writing, the resolver functions in BIND are not reentrant.

11.16 Implementation of getaddrinfo and getnameinfo Functions

We now look at an implementation of getaddrinfo and getnameinfo . Developing
an implementation of the former will let us look at how it operates in more detail. Our
implementation also supports Unix domain sockets, as we mentioned in Section 11.5.

Note: All of the appropriate portions of the code that we look at in this section that are depen-
dent on IPv4, IPv6, or Unix domain support, are bounded by an #ifdef and #endif of the
appropriate constant: IPV4 , IPV6 , or UNIXDOMAIN. This allows the code to be compiled on a
system that supports any combination of these three protocols. But we have removed all these
preprocessor statements from the code that we show because they add nothing to our discus-
sion and make the code harder to follow.

We also note that we do not cover Unix domain sockets in detail until Chapter 14.

Figure 11.18 shows the functions that are called by getaddrinfo . All begin with
the ga_ prefix.

ga_echeck ga_unix ga_nsearch ga_serv

getaddrinfo

ga_aistruct ga_port

ga_clone

Figure 11.18 Functions called by our implementation of getaddrinfo .

The first file is our gai_hdr.h header, shown in Figure 11.19, which is included by
all our source files.

We include our normal unp.h header and one additional header. We will see the
use of our AI_CLONE flag and our search structure shortly. The remainder of the
header defines the function prototypes for the various functions we show in this sec-
tion.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

306 Advanced Name and Address Conversions Chapter 11

libgai/gai_hdr.c
1 #include "unp.h"
2 #include <ctype.h> /* isxdigit(), etc. */

3 /* following internal flag cannot overlap with other AI_xxx flags */
4 #define AI_CLONE 4 /* clone this entry for other socket types */

5 struct search {
6 const char *host; /* hostname or address string */
7 int family; /* AF_xxx */
8 };

9 /* function prototypes for our own internal functions */
10 int ga_aistruct(struct addrinfo ***, const struct addrinfo *,
11 const void *, int);
12 struct addrinfo *ga_clone(struct addrinfo *);
13 int ga_echeck(const char *, const char *, int, int, int, int);
14 int ga_nsearch(const char *, const struct addrinfo *, struct search *);
15 int ga_port(struct addrinfo *, int, int);
16 int ga_serv(struct addrinfo *, const struct addrinfo *, const char *);
17 int ga_unix(const char *, struct addrinfo *, struct addrinfo **);

18 int gn_ipv46(char *, size_t, char *, size_t, void *, size_t,
19 int, int, int);

libgai/gai_hdr.c

Figure 11.19 gai_hdr.h header.

Figure 11.20 shows the first part of the getaddrinfo function.

Define error macro

13–17 At more than a dozen points throughout this function if we encounter an error, we
want to free all the memory that we have allocated and return the appropriate return
code. To simplify the code we define this macro that stores the return code in the vari-
able error and branches to the label bad at the end of the function (Figure 11.26).

Initializ e automatic variables

18–20 Some automatic variables are initialized. We describe the aihead and aipnext
pointers in Figure 11.34.

Copy caller’s hints structure

21–25 If the caller provides a hints structure, we copy it into our own local variable, so we
can modify it later. Otherwise we start with a structure that is all zero, other than
ai_family , which is initialized to AF_UNSPEC. The latter is normally defined to be 0,
but this is not required by Posix.1g.

Check arguments

26–29 We call our ga_echeck function, shown in Figure 11.39, to validate some of the
arguments.

Check for Unix domain pathname

30–34 If the hostname is either /local or /unix and the service name begins with a
slash, we process this argument as a Unix domain pathname. Our function ga_unix
(Figure 11.33) completely processes the pathname.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 307

libgai/getaddrinfo.c
1 #include "gai_hdr.h"
2 #include <arpa/nameser.h> /* needed for <resolv.h> */
3 #include <resolv.h> /* res_init, _res */

4 int
5 getaddrinfo(const char *hostname, const char *servname,
6 const struct addrinfo *hintsp, struct addrinfo **result)
7 {
8 int rc, error, nsearch;
9 char **ap, *canon;

10 struct hostent *hptr;
11 struct search search[3], *sptr;
12 struct addrinfo hints, *aihead, **aipnext;

13 /*
14 * If we encounter an error we want to free() any dynamic memory
15 * that we’ve allocated. This is our hack to simplify the code.
16 */
17 #define error(e) { error = (e); goto bad; }

18 aihead = NULL; /* initialize automatic variables */
19 aipnext = &aihead;
20 canon = NULL;

21 if (hintsp == NULL) {
22 bzero(&hints, sizeof(hints));
23 hints.ai_family = AF_UNSPEC;
24 } else
25 hints = *hintsp; /* struct copy */

26 /* first some basic error checking */
27 if ((rc = ga_echeck(hostname, servname, hints.ai_flags, hints.ai_family,
28 hints.ai_socktype, hints.ai_protocol)) != 0)
29 error(rc);

30 /* special case Unix domain first */
31 if (hostname != NULL &&
32 (strcmp(hostname, "/local") == 0 || strcmp(hostname, "/unix") == 0) &&
33 (servname != NULL && servname[0] == ’/’))
34 return (ga_unix(servname, &hints, result));

libgai/getaddrinfo.c

Figure 11.20 getaddrinfo function: first part, initialization.

The remainder of our getaddrinfo function (which continues in Figure 11.24)
deals with IPv4 and IPv6 sockets. Our function ga_nsearch , the first part of which is
shown in Figure 11.21, calculates the number of times that we look up a hostname. If
the caller specifies an address family of AF_INET or AF_INET6 , then we look up the
hostname only one time. But if the address family is unspecified, AF_UNSPEC, then we
do two lookups: once for an IPv6 hostname, and again for an IPv4 hostname. We show
the function in three parts:

• no hostname and AI_PASSIVE specified,
• no hostname and AI_PASSIVE not specified (i.e., active), and
• hostname specified.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

308 Advanced Name and Address Conversions Chapter 11

These three parts correspond to the three major portions of Figure 11.4.

libgai/ga_nsearch.c
6 int
7 ga_nsearch(const char *hostname, const struct addrinfo *hintsp,
8 struct search *search)
9 {

10 int nsearch = 0;

11 if (hostname == NULL || hostname[0] == ’\0’) {
12 if (hintsp->ai_flags & AI_PASSIVE) {
13 /* no hostname and AI_PASSIVE: implies wildcard bind */
14 switch (hintsp->ai_family) {
15 case AF_INET:
16 search[nsearch].host = "0.0.0.0";
17 search[nsearch].family = AF_INET;
18 nsearch++;
19 break;
20 case AF_INET6:
21 search[nsearch].host = "0::0";
22 search[nsearch].family = AF_INET6;
23 nsearch++;
24 break;
25 case AF_UNSPEC:
26 search[nsearch].host = "0::0"; /* IPv6 first, then IPv4 */
27 search[nsearch].family = AF_INET6;
28 nsearch++;
29 search[nsearch].host = "0.0.0.0";
30 search[nsearch].family = AF_INET;
31 nsearch++;
32 break;
33 }

libgai/ga_nsearch.c

Figure 11.21 ga_nsearch function: no hostname and passive.

No hostname and passive socket

11–33 If the caller does not specify a hostname and specifies AI_PASSIVE , we return
information to create one or more passive sockets that will bind the wildcard address.
A switch is made based on the address family: an IPv4 socket needs to bind 0.0.0.0
(INADDR_ANY), and an IPv6 socket needs to bind 0::0 (IN6ADDR_ANY_INIT). If the
family is AF_UNSPEC, we must return information to create two sockets: the first one for
IPv6 and the second for IPv4. The reason for the ordering of IPv6 first, and then IPv4 is
because an IPv6 socket on a dual-stack host can handle both IPv6 and IPv4 clients. In
this scenario, if the caller creates only one socket from the returned list of addrinfo
structures, it should be the IPv6 socket.

This function creates an array of search structures (Figure 11.19) with each entry
specifying the hostname to look up and the address family. The pointer to the caller’s
array of search structures is the last argument to this function. The return value is the
number of these structures that are created, and this will always be one or two.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 309

The next part of this function, shown in Figure 11.22, handles the case of no host-
name and AI_PASSIVE not set. This implies that the caller wants to create an active
socket to the local host.

libgai/ga_nsearch.c
34 } else {
35 /* no host and not AI_PASSIVE: connect to local host */
36 switch (hintsp->ai_family) {
37 case AF_INET:
38 search[nsearch].host = "localhost"; /* 127.0.0.1 */
39 search[nsearch].family = AF_INET;
40 nsearch++;
41 break;
42 case AF_INET6:
43 search[nsearch].host = "0::1";
44 search[nsearch].family = AF_INET6;
45 nsearch++;
46 break;
47 case AF_UNSPEC:
48 search[nsearch].host = "0::1"; /* IPv6 first, then IPv4 */
49 search[nsearch].family = AF_INET6;
50 nsearch++;
51 search[nsearch].host = "localhost";
52 search[nsearch].family = AF_INET;
53 nsearch++;
54 break;
55 }
56 }

libgai/ga_nsearch.c

Figure 11.22 ga_nsearch function: no hostname and not passive.

34–56 For IPv4 we assume the hostname localhost will return the loopback address,
normally 127.0.0.1. There is no common hostname for the local host with IPv6, so we
return the loopback address of 0::1 . As with the passive case, if no address family is
specified we return two structures: first one for IPv6 and then one for IPv4.

Figure 11.23 shows the final part of this function, the else clause of the original if
statement. This code is executed when a hostname is specified.

57–82 The AI_PASSIVE flag does not matter in this scenario; the hostname needs to be
looked up. If the caller creates a passive socket, then the resulting socket address struc-
ture will be used in a call to bind , but if the caller creates an active socket, the socket
address structure will be used in a call to connect . We create one or two search
structures: one if the address family is specified and two if it is not specified. As with
the previous two scenarios, if two structures are returned, the first is for IPv6 and the
second for IPv4.

We now return to our getaddrinfo function, in Figure 11.24, which starts with a
call to ga_nsearch .

© Copyright 1998 by Prentice Hall PTR, All rights reserved

310 Advanced Name and Address Conversions Chapter 11

libgai/ga_nsearch.c
57 } else { /* host is specified */
58 switch (hintsp->ai_family) {
59 case AF_INET:
60 search[nsearch].host = hostname;
61 search[nsearch].family = AF_INET;
62 nsearch++;
63 break;
64 case AF_INET6:
65 search[nsearch].host = hostname;
66 search[nsearch].family = AF_INET6;
67 nsearch++;
68 break;
69 case AF_UNSPEC:
70 search[nsearch].host = hostname;
71 search[nsearch].family = AF_INET6; /* IPv6 first */
72 nsearch++;
73 search[nsearch].host = hostname;
74 search[nsearch].family = AF_INET; /* then IPv4 */
75 nsearch++;
76 break;
77 }
78 }
79 if (nsearch < 1 || nsearch > 2)
80 err_quit("nsearch = %d", nsearch);
81 return (nsearch);
82 }

libgai/ga_nsearch.c

Figure 11.23 ga_nsearch function: hostname specified.

Call ga_nsearch

36 We call our ga_nsearch function, filling in our search array, and returning the
number of structures in the array: one or two.

Loop through all the search structures

37 We loop through each search structure that was created by ga_nsearch .

Check for IPv4 dotted-decimal string

39–44 If the first character of the hostname is a digit, we check whether or not the host-
name is really a dotted-decimal string. We call inet_pton to do this check and conver-
sion. If it succeeds but the caller specifies an address family other than AF_INET , this is
an error.

45–46 We check that the family of the search structure is also AF_INET , but a mismatch
here only causes this search structure to be ignored. This scenario can happen, for
example, if the caller specifies a hostname of 192.3.4.5 but no address family.
ga_nsearch creates two search structures: one for IPv6 and one for IPv4. The first
time through the for loop the call to inet_pton succeeds, but since the family of the
search structure is AF_INET6 , we want to ignore this structure, and not generate an
error.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 311

libgai/getaddrinfo.c
35 /* remainder of function for IPv4/IPv6 */
36 nsearch = ga_nsearch(hostname, &hints, &search[0]);
37 for (sptr = &search[0]; sptr < &search[nsearch]; sptr++) {
38 /* check for an IPv4 dotted-decimal string */
39 if (isdigit(sptr->host[0])) {
40 struct in_addr inaddr;

41 if (inet_pton(AF_INET, sptr->host, &inaddr) == 1) {
42 if (hints.ai_family != AF_UNSPEC &&
43 hints.ai_family != AF_INET)
44 error(EAI_ADDRFAMILY);
45 if (sptr->family != AF_INET)
46 continue; /* ignore */
47 rc = ga_aistruct(&aipnext, &hints, &inaddr, AF_INET);
48 if (rc != 0)
49 error(rc);
50 continue;
51 }
52 }
53 /* check for an IPv6 hex string */
54 if ((isxdigit(sptr->host[0]) || sptr->host[0] == ’:’) &&
55 (strchr(sptr->host, ’:’) != NULL)) {
56 struct in6_addr in6addr;

57 if (inet_pton(AF_INET6, sptr->host, &in6addr) == 1) {
58 if (hints.ai_family != AF_UNSPEC &&
59 hints.ai_family != AF_INET6)
60 error(EAI_ADDRFAMILY);
61 if (sptr->family != AF_INET6)
62 continue; /* ignore */
63 rc = ga_aistruct(&aipnext, &hints, &in6addr, AF_INET6);
64 if (rc != 0)
65 error(rc);
66 continue;
67 }
68 }

libgai/getaddrinfo.c

Figure 11.24 getaddrinfo function: check for IPv4 or IPv6 address string.

Create addrinfo structure

47–52 Our function ga_aistruct creates an addrinfo structure and adds it to the
linked list that is being built (the aipnext pointer).

Check for IPv6 address string

53–60 If the first character of the hostname is either a hexadecimal digit or a colon and the
string contains a colon, we check whether the hostname is an IPv6 address string by
calling inet_pton . If it succeeds but the caller specifies an address family other than
AF_INET6 , this is an error.

61–62 We check that the family of the search structure is also AF_INET6 , but a mis-
match here only causes this search structure to be ignored.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

312 Advanced Name and Address Conversions Chapter 11

Create addrinfo structure

63–68 Our function ga_aistruct creates an addrinfo structure and adds it to the
linked list that is being built.

The first two tests in the loop (Figure 11.24) handle an IPv4 dotted-decimal string or
an IPv6 address string. The remainder of the loop, shown in Figure 11.25, looks up the
hostname by calling either gethostbyname or gethostbyname2 .

Initializ e resolver first time

70–71 We call the resolver ’s res_init function if it has not been called before.

Call gethostbyname2 if two searches are being performed

72–74 If nsearch is 2, then we are going through the for loop twice: once for IPv6 and
again for IPv4. If the hostname argument has an address in only one of the two fami-
lies, we want to return only that address. For example, our host solaris in Section 9.2
has a AAAA record and an A record in the DNS. The first time around the loop we
want to find the AAAA record, and the second time the A record. But if the hostname
has only an A record, we do not want to process that record the first time around the
loop when the family member of the search structure is AF_INET6 . That is, since we
know that we will be searching for an A record for this host, do not search for a AAAA
record using gethostbyname and possibly return the IPv4-mapped IPv6 address cor-
responding to the A record. Looking at Figure 9.5 the way to search for only A records
when the family is AF_INET and to search for only AAAA records when the family is
AF_INET6 is to call gethostbyname2 instead of gethostbyname , with the
RES_USE_INET6option off.

Call gethostbyname if one search is being performed

75–81 If only one search is being performed, we call gethostbyname with the
RES_USE_INET6option set if the family is AF_INET6 or the option cleared if the fam-
ily is AF_INET . For example, if the caller specifies a hostname that has only an A
record, but specifies a family of AF_INET6 , we want to return the IPv4-mapped IPv6
address.

Handle resolver failure

82–97 If the call to the resolver failed, but nsearch is two, this is not an error, as one of
the passes through the loop may succeed. (We check at the end of the loop that at least
one addrinfo structure is being returned.) But if this was the only call to the resolver
we return an error corresponding to the resolver ’s h_errno .

Check for address family mismatch

98–100 If the caller specifies an address family, but the family returned by the resolver dif-
fers, this is an error.

Save canonical name

101–106 If the caller specifies a hostname and the AI_CANONNAMEflag, we save the first
canonical name returned by the resolver. (Recall from Figure 11.22 that we call the
resolver for the name localhost even of the caller does not specify a hostname.) We
duplicate the string returned by the resolver and save its pointer in canon .

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 313

libgai/getaddrinfo.c
69 /* remainder of for() to look up hostname */
70 if ((_res.options & RES_INIT) == 0)
71 res_init(); /* need this to set _res.options */

72 if (nsearch == 2) {
73 _res.options &= ˜RES_USE_INET6;
74 hptr = gethostbyname2(sptr->host, sptr->family);
75 } else {
76 if (sptr->family == AF_INET6)
77 _res.options |= RES_USE_INET6;
78 else
79 _res.options &= ˜RES_USE_INET6;
80 hptr = gethostbyname(sptr->host);
81 }
82 if (hptr == NULL) {
83 if (nsearch == 2)
84 continue; /* failure OK if multiple searches */

85 switch (h_errno) {
86 case HOST_NOT_FOUND:
87 error(EAI_NONAME);
88 case TRY_AGAIN:
89 error(EAI_AGAIN);
90 case NO_RECOVERY:
91 error(EAI_FAIL);
92 case NO_DATA:
93 error(EAI_NODATA);
94 default:
95 error(EAI_NONAME);
96 }
97 }
98 /* check for address family mismatch if one specified */
99 if (hints.ai_family != AF_UNSPEC && hints.ai_family != hptr->h_addrtype)

100 error(EAI_ADDRFAMILY);

101 /* save canonical name first time */
102 if (hostname != NULL && hostname[0] != ’\0’ &&
103 (hints.ai_flags & AI_CANONNAME) && canon == NULL) {
104 if ((canon = strdup(hptr->h_name)) == NULL)
105 error(EAI_MEMORY);
106 }
107 /* create one addrinfo{} for each returned address */
108 for (ap = hptr->h_addr_list; *ap != NULL; ap++) {
109 rc = ga_aistruct(&aipnext, &hints, *ap, hptr->h_addrtype);
110 if (rc != 0)
111 error(rc);
112 }
113 }
114 if (aihead == NULL)
115 error(EAI_NONAME); /* nothing found */

libgai/getaddrinfo.c

Figure 11.25 getaddrinfo function: lookup hostname.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

314 Advanced Name and Address Conversions Chapter 11

Create one addrinfo structure per address

107–112 For each address returned by the resolver in the h_addr_list array, we call our
ga_aistruct function to create an addrinfo structure and append it to the linked list
of structures being created.

Check for no matches

114–115 If the head of the linked list of addrinfo structures is still a null pointer, all itera-
tions through the for loop failed.

Figure 11.26 shows the final part of the getaddrinfo function.

libgai/getaddrinfo.c
116 /* return canonical name */
117 if (hostname != NULL && hostname[0] != ’\0’ &&
118 hints.ai_flags & AI_CANONNAME) {
119 if (canon != NULL)
120 aihead->ai_canonname = canon; /* strdup’ed earlier */
121 else {
122 if ((aihead->ai_canonname = strdup(search[0].host)) == NULL)
123 error(EAI_MEMORY);
124 }
125 }
126 /* now process the service name */
127 if (servname != NULL && servname[0] != ’\0’) {
128 if ((rc = ga_serv(aihead, &hints, servname)) != 0)
129 error(rc);
130 }
131 *result = aihead; /* pointer to first structure in linked list */
132 return (0);

133 bad:
134 freeaddrinfo(aihead); /* free any alloc’ed memory */
135 return (error);
136 }

libgai/getaddrinfo.c

Figure 11.26 getaddrinfo function: process service name.

Return canonical name

116–125 If the caller specifies a hostname and the AI_CANONNAMEflag, and if we saved a
copy to the canonical name in our canon pointer, that pointer is returned in the
ai_canonname member of the first addrinfo structure. If no canonical name was
found by the resolver (perhaps the hostname was an address string), then a copy of the
hostname argument is returned instead.

Process service name

126–130 If the caller specifies a service name, it is now processed by calling our ga_serv
function.

Return pointer to linked list

131–132 The pointer to the head of the linked list of addrinfo structures that have been cre-
ated is returned, along with a function return value of 0.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 315

Error return

133–135 If an error was encountered, freeaddrinfo is called to free all the memory that
was allocated, and the return value is the EAI_ xxx value.

Our ga_serv function, which was called from Figure 11.26 to process the service
name argument, is shown in Figure 11.27.

Check for port number string

12–27 If the first character of the service name is a digit, we assume the service name is a
port number and call atoi to convert it to binary. If the caller specifies a socket type
(SOCK_STREAMor SOCK_DGRAM), then our ga_port function is called once for that
socket type. But if no socket type is specified, our ga_port function is called twice,
once for TCP and once for UDP. (Recall Figure 11.2.)

Tr y getservbyname for TCP

28–36 If no socket type is specified, or a TCP socket is specified, getservbyname is called
with a second argument of "tcp" . If this succeeds, our ga_port function is called. If
this call fails, that is OK, as the service name could be valid for UDP. We keep a counter
of the number of times that ga_port returns success and return an error only if this is 0
at the end of the function.

Tr y getservbyname for UDP

37–44 If no socket type is specified, or a UDP socket is specified, we call getservbyname
with a second argument of "udp" . If this succeeds, we call our ga_port function.

Check for error

45–51 If our nfound counter is nonzero, we had success. Otherwise an error is returned.

Our ga_port function, which we show in Figure 11.28, was called from Fig-
ure 11.27 each time a port number was found.

Loop through all addrinfo structures

33 We loop through all the addrinfo structures that were created by the calls to
ga_aistruct in Figures 11.24 and 11.25. The AI_CLONE flag is always set by
ga_aistruct when no socket type is specified by the caller. That is an indication that
this addrinfo structure might need to be cloned for both TCP and UDP.

Check AI_CLONEflag

34–42 If the AI_CLONE flag is set and if the socket type is nonzero, another addrinfo
structure is cloned from this one by our ga_clone function. We show an example of
this shortly.

Set port number in socket address structure

44–47 The port number in the socket address structure is set and our counter nfound is
incremented.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

316 Advanced Name and Address Conversions Chapter 11

libgai/ga_serv.c
5 int
6 ga_serv(struct addrinfo *aihead, const struct addrinfo *hintsp,
7 const char *serv)
8 {
9 int port, rc, nfound;

10 struct servent *sptr;

11 nfound = 0;
12 if (isdigit(serv[0])) { /* check for port number string first */
13 port = htons(atoi(serv));
14 if (hintsp->ai_socktype) {
15 /* caller specifies socket type */
16 if ((rc = ga_port(aihead, port, hintsp->ai_socktype)) < 0)
17 return (EAI_MEMORY);
18 nfound += rc;
19 } else {
20 /* caller does not specify socket type */
21 if ((rc = ga_port(aihead, port, SOCK_STREAM)) < 0)
22 return (EAI_MEMORY);
23 nfound += rc;
24 if ((rc = ga_port(aihead, port, SOCK_DGRAM)) < 0)
25 return (EAI_MEMORY);
26 nfound += rc;
27 }
28 } else {
29 /* try service name, TCP then UDP */
30 if (hintsp->ai_socktype == 0 || hintsp->ai_socktype == SOCK_STREAM) {
31 if ((sptr = getservbyname(serv, "tcp")) != NULL) {
32 if ((rc = ga_port(aihead, sptr->s_port, SOCK_STREAM)) < 0)
33 return (EAI_MEMORY);
34 nfound += rc;
35 }
36 }
37 if (hintsp->ai_socktype == 0 || hintsp->ai_socktype == SOCK_DGRAM) {
38 if ((sptr = getservbyname(serv, "udp")) != NULL) {
39 if ((rc = ga_port(aihead, sptr->s_port, SOCK_DGRAM)) < 0)
40 return (EAI_MEMORY);
41 nfound += rc;
42 }
43 }
44 }

45 if (nfound == 0) {
46 if (hintsp->ai_socktype == 0)
47 return (EAI_NONAME); /* all calls to getservbyname() failed */
48 else
49 return (EAI_SERVICE); /* service not supported for socket type */
50 }
51 return (0);
52 }

libgai/ga_serv.c

Figure 11.27 ga_serv function.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 317

libgai/ga_port.c
27 int
28 ga_port(struct addrinfo *aihead, int port, int socktype)
29 /* port must be in network byte order */
30 {
31 int nfound = 0;
32 struct addrinfo *ai;

33 for (ai = aihead; ai != NULL; ai = ai->ai_next) {
34 if (ai->ai_flags & AI_CLONE) {
35 if (ai->ai_socktype != 0) {
36 if ((ai = ga_clone(ai)) == NULL)
37 return (-1); /* memory allocation error */
38 /* ai points to newly cloned entry, which is what we want */
39 }
40 } else if (ai->ai_socktype != socktype)
41 continue; /* ignore if mismatch on socket type */

42 ai->ai_socktype = socktype;

43 switch (ai->ai_family) {
44 case AF_INET:
45 ((struct sockaddr_in *) ai->ai_addr)->sin_port = port;
46 nfound++;
47 break;
48 case AF_INET6:
49 ((struct sockaddr_in6 *) ai->ai_addr)->sin6_port = port;
50 nfound++;
51 break;
52 }
53 }
54 return (nfound);
55 }

libgai/ga_port.c

Figure 11.28 ga_port function.

Consider an example. In Figure 11.1 we assumed a call to getaddrinfo for a host
with two IP addresses, a service name of domain (port 53 for both TCP and UDP), and
no specification of the socket type. The loop in our getaddrinfo function (Fig-
ure 11.25) creates two addrinfo structures, one for each IP address returned by
gethostbyname . The AI_CLONE flag is also set in each structure, because no socket
type is specified. We show the resulting linked list in Figure 11.29.

ga_serv is called from Figure 11.26. Since the domain service name is valid for
both TCP and UDP, getservbyname is called two times, and ga_port is called two
times: first with a final argument of SOCK_STREAMand again with a final argument of
SOCK_DGRAM. The first time ga_port is called it starts with the linked list shown in
Figure 11.29. In Figure 11.28 the AI_CLONEflag is set for both structures, but the socket
type is 0. Therefore all that happens to each addrinfo structure the first time ga_port
is called is to set the ai_socktype member to SOCK_STREAMand the port number in
the socket address structure to 53. The AI_CLONE flag remains set. This gives us the
linked list shown in Figure 11.30.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

318 Advanced Name and Address Conversions Chapter 11

socket type 0
AI_CLONE

socket type 0
AI_CLONE

aihead addrinfo{} addrinfo{}

206.62.226.35 206.62.226.66

sockaddr_in{} sockaddr_in{}

Figure 11.29 addrinfo structures when ga_port is called first time.

SOCK_STREAM
AI_CLONE

SOCK_STREAM
AI_CLONE

aihead addrinfo{} addrinfo{}

206.62.226.35
port 53

206.62.226.66
port 53

sockaddr_in{} sockaddr_in{}

Figure 11.30 addrinfo structures after first call to ga_port .

SOCK_STREAM
AI_CLONE

SOCK_DGRAM SOCK_STREAM
AI_CLONE

SOCK_DGRAM

aihead addrinfo{} addrinfo{} addrinfo{} addrinfo{}

206.62.226.35
port 53

206.62.226.35
port 53

206.62.226.66
port 53

206.62.226.66
port 53

sockaddr_in{} sockaddr_in{} sockaddr_in{} sockaddr_in{}

Figure 11.31 addrinfo structures after second call to ga_port .

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 319

But the second time ga_port is called (with a final argument of SOCK_DGRAM),
since the AI_CLONE flag is set and the socket type is not 0, ga_clone is called for each
addrinfo structure. The ai_socktype member in each of the newly cloned struc-
tures is set to SOCK_DGRAMand we end up with the linked list shown in Figure 11.31.
In this figure the second addrinfo structure and its socket address structure are cloned
from the first set of structures, and the fourth addrinfo structure and its socket
address structure are cloned from the third set of structures.

Figure 11.32 shows our ga_clone function, which was called from Figure 11.28 to
clone a new addrinfo structure and its socket address structure from an existing set of
structures.

libgai/ga_clone.c
5 struct addrinfo *
6 ga_clone(struct addrinfo *ai)
7 {
8 struct addrinfo *new;

9 if ((new = calloc(1, sizeof(struct addrinfo))) == NULL)
10 return (NULL);

11 new->ai_next = ai->ai_next;
12 ai->ai_next = new;

13 new->ai_flags = 0; /* make sure AI_CLONE is off */
14 new->ai_family = ai->ai_family;
15 new->ai_socktype = ai->ai_socktype;
16 new->ai_protocol = ai->ai_protocol;
17 new->ai_canonname = NULL;
18 new->ai_addrlen = ai->ai_addrlen;
19 if ((new->ai_addr = malloc(ai->ai_addrlen)) == NULL)
20 return (NULL);
21 memcpy(new->ai_addr, ai->ai_addr, ai->ai_addrlen);

22 return (new);
23 }

libgai/ga_clone.c

Figure 11.32 ga_clone function.

Allocate addrinfo structure and insert into linked list

9–12 A new addrinfo structure is allocated and its ai_next pointer is set to the
ai_next pointer of the entry being cloned (i.e., what will be the previous entry on the
list). The next pointer of the entry being cloned becomes the new structure just allo-
cated.

Initializ e from cloned entry

13–22 All the fields in the new addrinfo structure are copied from the entry being cloned
with the exception of ai_flags , which is set to 0, and ai_canonname , which is set to
a null pointer. A pointer to the newly created structure is the return value of the func-
tion.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

320 Advanced Name and Address Conversions Chapter 11

Our ga_unix function, which we shown in Figure 11.33, was called from Fig-
ure 11.20 to completely process a Unix domain pathname.

libgai/ga_unix.c
3 int
4 ga_unix(const char *path, struct addrinfo *hintsp, struct addrinfo **result)
5 {
6 int rc;
7 struct addrinfo *aihead, **aipnext;

8 aihead = NULL;
9 aipnext = &aihead;

10 if (hintsp->ai_family != AF_UNSPEC && hintsp->ai_family != AF_LOCAL)
11 return (EAI_ADDRFAMILY);

12 if (hintsp->ai_socktype == 0) {
13 /* no socket type specified: return stream then dgram */
14 hintsp->ai_socktype = SOCK_STREAM;
15 if ((rc = ga_aistruct(&aipnext, hintsp, path, AF_LOCAL)) != 0)
16 return (rc);
17 hintsp->ai_socktype = SOCK_DGRAM;
18 }
19 if ((rc = ga_aistruct(&aipnext, hintsp, path, AF_LOCAL)) != 0)
20 return (rc);

21 if (hintsp->ai_flags & AI_CANONNAME) {
22 struct utsname myname;

23 if (uname(&myname) < 0)
24 return (EAI_SYSTEM);
25 if ((aihead->ai_canonname = strdup(myname.nodename)) == NULL)
26 return (EAI_MEMORY);
27 }
28 *result = aihead; /* pointer to first structure in linked list */
29 return (0);
30 }

libgai/ga_unix.c

Figure 11.33 ga_unix function.

ga_aistruct creates structures

10–20 If a socket type is not specified, we call our ga_aistruct function twice to create
two addrinfo structures: one with a socket type of SOCK_STREAMand another with a
socket type of SOCK_DGRAM. But if the caller specifies a nonzero socket type, our
ga_aistruct function is called only once, creating one addrinfo structure with that
socket type.

Return canonical name

21–27 If the AI_CANONNAMEflag was specified by the caller, we call uname to obtain the
system name and return the nodename member (Section 9.7) as the canonical name.

We explain the aihead and aipnext pointers with the ga_aistruct function,
which we describe next.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 321

Our ga_aistruct function was called from Figures 11.24 and 11.25 to create an
addrinfo structure for an IPv4 or IPv6 address, and from Figure 11.33 to create an
addrinfo structure for a Unix domain socket. We show the first part of the function in
Figure 11.34.

libgai/ga_aistruct.c
5 int
6 ga_aistruct(struct addrinfo ***paipnext, const struct addrinfo *hintsp,
7 const void *addr, int family)
8 {
9 struct addrinfo *ai;

10 if ((ai = calloc(1, sizeof(struct addrinfo))) == NULL)
11 return (EAI_MEMORY);
12 ai->ai_next = NULL;
13 ai->ai_canonname = NULL;
14 **paipnext = ai;
15 *paipnext = &ai->ai_next;

16 if ((ai->ai_socktype = hintsp->ai_socktype) == 0)
17 ai->ai_flags |= AI_CLONE;

18 ai->ai_protocol = hintsp->ai_protocol;
libgai/ga_aistruct.c

Figure 11.34 ga_aistruct function: first part.

Allocate addrinfo structure and add to linked list

10–15 An addrinfo structure is allocated and added to the linked list being built. Two
pointers are used to build the linked list: aihead and aipnext . Both were allocated
and initialized in Figure 11.20 for an IPv4 or an IPv6 socket, or in Figure 11.33 for a Unix
domain socket. aihead is initialized to a null pointer and aipnext is initialized to
point to aihead . We show this in Figure 11.35.

aihead

aipnext

NULL

Figure 11.35 Initialization of linked list pointers.

aihead always points to the first addrinfo structure on the linked list (therefore its
datatype is struct addrinfo *). aipnext normally points to the ai_next member
of the last structure on the linked list (therefore its datatype is struct addrinfo **).
We use the qualifier ‘‘normally’’ with regard to aipnext because upon initialization it
really points to aihead , but after the first structure is allocated and placed onto the list,
it always points to the ai_next member.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

322 Advanced Name and Address Conversions Chapter 11

Returning to our ga_aistruct function, after a new structure is allocated the two
statements

**paipnext = ai;
*paipnext = &ai->ai_next;

are executed. The first statement sets the ai_next pointer of the last structure on the
list (or aihead if this new structure is the first on the list) to point to the newly allo-
cated structure, and the second statement sets aipnext to point to the ai_next mem-
ber of the newly allocated structure. The extra level of indirection is needed in both
statements because the address of aipnext is an argument to the function (see Exer-
cise 11.4). When the first structure is added to the list, we have the data structures
shown in Figure 11.36.

first
structure

ai_next

aihead

aipnext

addrinfo{}

NULL

Figure 11.36 Linked list after first structure added.

When our ga_aistruct function is called the next time to allocate a second structure
and add it to the list, we have the data structures shown in Figure 11.37.

first
structure

ai_next

second
structure

ai_next

aihead

aipnext

addrinfo{} addrinfo{}

NULL

Figure 11.37 Linked list after second structure added.

Set socket type

16–17 The ai_socktype member is set to the socket type provided by the caller and if
this is 0, the AI_CLONEflag is set.

Figure 11.38 shows the second part of the function: a switch with one case per
address family to allocate a socket address structure and initialize it.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 323

libgai/ga_aistruct.c
19 switch ((ai->ai_family = family)) {
20 case AF_INET:{
21 struct sockaddr_in *sinptr;

22 /* allocate sockaddr_in{} and fill in all but port */
23 if ((sinptr = calloc(1, sizeof(struct sockaddr_in))) == NULL)
24 return (EAI_MEMORY);
25 #ifdef HAVE_SOCKADDR_SA_LEN
26 sinptr->sin_len = sizeof(struct sockaddr_in);
27 #endif
28 sinptr->sin_family = AF_INET;
29 memcpy(&sinptr->sin_addr, addr, sizeof(struct in_addr));
30 ai->ai_addr = (struct sockaddr *) sinptr;
31 ai->ai_addrlen = sizeof(struct sockaddr_in);
32 break;
33 }
34 case AF_INET6:{
35 struct sockaddr_in6 *sin6ptr;

36 /* allocate sockaddr_in6{} and fill in all but port */
37 if ((sin6ptr = calloc(1, sizeof(struct sockaddr_in6))) == NULL)
38 return (EAI_MEMORY);
39 #ifdef HAVE_SOCKADDR_SA_LEN
40 sin6ptr->sin6_len = sizeof(struct sockaddr_in6);
41 #endif
42 sin6ptr->sin6_family = AF_INET6;
43 memcpy(&sin6ptr->sin6_addr, addr, sizeof(struct in6_addr));
44 ai->ai_addr = (struct sockaddr *) sin6ptr;
45 ai->ai_addrlen = sizeof(struct sockaddr_in6);
46 break;
47 }
48 case AF_LOCAL:{
49 struct sockaddr_un *unp;

50 /* allocate sockaddr_un{} and fill in */
51 if (strlen(addr) >= sizeof(unp->sun_path))
52 return(EAI_SERVICE);
53 if ((unp = calloc(1, sizeof(struct sockaddr_un))) == NULL)
54 return(EAI_MEMORY);

55 unp->sun_family = AF_LOCAL;
56 strcpy(unp->sun_path, addr);
57 #ifdef HAVE_SOCKADDR_SA_LEN
58 unp->sun_len = SUN_LEN(unp);
59 #endif
60 ai->ai_addr = (struct sockaddr *) unp;
61 ai->ai_addrlen = sizeof(struct sockaddr_un);
62 if (hintsp->ai_flags & AI_PASSIVE)
63 unlink(unp->sun_path); /* OK if this fails */
64 break;
65 }
66 }
67 return (0);
68 }

libgai/ga_aistruct.c
Figure 11.38 ga_aistruct function: second part.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

324 Advanced Name and Address Conversions Chapter 11

Allocate IPv4 socket address structure and initialize

20–33 A sockaddr_in structure is allocated and the ai_addr pointer in the addrinfo
structure is set to point to it. The IP address, address family, and length members of the
socket address structure are all initialized. The port number is not initialized until
ga_serv is called, which in turn calls ga_port .

Allocate IPv6 socket address structure and initialize

34–47 A sockaddr_in6 structure is allocated and initialized, similar to the IPv4 case.

Allocate Unix domain socket address structure and initialize

48–65 A sockaddr_un structure is allocated and initialized. The address is a pathname
and if the AI_PASSIVE flag was specified by the caller, we try to unlink the pathname
to prevent an error return when the caller calls bind . But it is not an error if the
unlink fails.

Our ga_echeck function, which we show in Figure 11.39, was called from Fig-
ure 11.20 to perform some initial error checking on the caller’s arguments.

libgai/ga_echeck.c
5 int
6 ga_echeck(const char *hostname, const char *servname,
7 int flags, int family, int socktype, int protocol)
8 {
9 if (flags & ˜(AI_PASSIVE | AI_CANONNAME))

10 return (EAI_BADFLAGS); /* unknown flag bits */

11 if (hostname == NULL || hostname[0] == ’\0’) {
12 if (servname == NULL || servname[0] == ’\0’)
13 return (EAI_NONAME); /* host or service must be specified */
14 }
15 switch (family) {
16 case AF_UNSPEC:
17 break;
18 case AF_INET:
19 if (socktype != 0 &&
20 (socktype != SOCK_STREAM &&
21 socktype != SOCK_DGRAM &&
22 socktype != SOCK_RAW))
23 return (EAI_SOCKTYPE); /* invalid socket type */
24 break;
25 case AF_INET6:
26 if (socktype != 0 &&
27 (socktype != SOCK_STREAM &&
28 socktype != SOCK_DGRAM &&
29 socktype != SOCK_RAW))
30 return (EAI_SOCKTYPE); /* invalid socket type */
31 break;
32 case AF_LOCAL:
33 if (socktype != 0 &&
34 (socktype != SOCK_STREAM &&
35 socktype != SOCK_DGRAM))
36 return (EAI_SOCKTYPE); /* invalid socket type */
37 break;

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 325

38 default:
39 return (EAI_FAMILY); /* unknown protocol family */
40 }
41 return (0);
42 }

libgai/ga_echeck.c

Figure 11.39 ga_echeck function.

9–14 The flags are verified and either a hostname or a service name must be specified.
15–41 Depending on the address family, only certain types of sockets are supported, and

this verifies the socket type.
We do not check the caller’s ai_protocol hint, if any, as few applications specify

this value (which becomes the third argument to socket). Should an invalid combina-
tion be specified, such as a socket type of SOCK_DGRAMand a protocol of
IPPROTO_TCP, the protocol hint is returned to the caller in Figure 11.34 and if the caller
uses this value in a call to socket , an error of EPROTONOSUPPORTwill be returned.

We have finished with the getaddrinfo function, and all the internal functions
that it calls. Figure 11.40 shows the freeaddrinfo function, which releases all the
memory in the linked list. We called this function from Figure 11.26 if an error occurred,
and the user also calls it to release a linked list of structures.

libgai/freeaddrinfo.c
1 #include "gai_hdr.h"

2 void
3 freeaddrinfo(struct addrinfo *aihead)
4 {
5 struct addrinfo *ai, *ainext;

6 for (ai = aihead; ai != NULL; ai = ainext) {
7 if (ai->ai_addr != NULL)
8 free(ai->ai_addr); /* socket address structure */

9 if (ai->ai_canonname != NULL)
10 free(ai->ai_canonname);

11 ainext = ai->ai_next; /* can’t fetch ai_next after free() */
12 free(ai); /* the addrinfo{} itself */
13 }
14 }

libgai/freeaddrinfo.c

Figure 11.40 freeaddrinfo function: first part.

6–13 The linked list of addrinfo structures is traversed. If a socket address structure
has been allocated, it is freed. If a canonical name string has been allocated, it is freed.
Finally, the addrinfo structure itself is freed. We must be careful to save the contents
of the structure’s ai_next pointer before freeing the structure, as we cannot reference
the structure after free returns.

Figure 11.41 shows our implementation of the getnameinfo function. It consists
of a switch statement with one case per address family.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

326 Advanced Name and Address Conversions Chapter 11

libgai/getnameinfo.c
2 int
3 getnameinfo(const struct sockaddr *sa, socklen_t salen,
4 char *host, size_t hostlen,
5 char *serv, size_t servlen, int flags)
6 {

7 switch (sa->sa_family) {
8 case AF_INET:{
9 struct sockaddr_in *sain = (struct sockaddr_in *) sa;

10 return (gn_ipv46(host, hostlen, serv, servlen,
11 &sain->sin_addr, sizeof(struct in_addr),
12 AF_INET, sain->sin_port, flags));
13 }

14 case AF_INET6:{
15 struct sockaddr_in6 *sain = (struct sockaddr_in6 *) sa;

16 return (gn_ipv46(host, hostlen, serv, servlen,
17 &sain->sin6_addr, sizeof(struct in6_addr),
18 AF_INET6, sain->sin6_port, flags));
19 }

20 case AF_LOCAL:{
21 struct sockaddr_un *un = (struct sockaddr_un *) sa;

22 if (hostlen > 0)
23 snprintf(host, hostlen, "%s", "/local");
24 if (servlen > 0)
25 snprintf(serv, servlen, "%s", un->sun_path);
26 return (0);
27 }

28 default:
29 return (1);
30 }
31 }

libgai/getnameinfo.c

Figure 11.41 getnameinfo function.

Handle IPv4 and IPv6 socket address structures

8–19 We call our gn_ipv46 function (shown next) to handle IPv4 and IPv6 socket
address structures.

Handle Unix domain socket address structures

20–27 For a Unix domain socket address structure we return /local as the hostname and
the pathname that is bound to the socket as the service name. If no pathname is bound
to the socket, then the returned service name will be a null string.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Section 11.16 Implementation of getaddrinfo and getnameinfo Functions 327

We return the hostname and service name using snprintf instead of strncpy . If we used
the latter we could write

strncpy(host, "/local", hostlen);

While this guarantees that we do not overflow the caller’s buffer, if hostlen is less than or
equal to 6, then the caller’s buffer will not be null terminated. But we are writing a library rou-
tine and we should always return a null-terminated string if that is what the caller expects.
This could cause problems for the caller at a later time in the program. Therefore we should
always write

strncpy(host, "/local", hostlen-1);
host[hostlen-1] = ’\0’;

which guarantees that we do not overwrite the caller’s buffer and that the result is null termi-
nated. We use snprintf instead of these two statements, since it will not overflow the desti-
nation and it guarantees that the destination is null terminated. An alternate design would be
to define our own library function that calls strncpy and null terminates the result, but call-
ing the existing snprintf seems simpler.

Figure 11.42 is our gn_ipv46 function, which handles IPv4 and IPv6 socket address
structures for getnameinfo .

Return hostname

12–23 If the NI_NUMERICHOSTflag is specified, we call inet_ntop to return the presen-
tation format of the IP address; otherwise gethostbyaddr searches for the hostname
corresponding to the IP address. If gethostbyaddr succeeds and the NI_NOFQDN(no
fully qualified domain name) flag is specified, the hostname is terminated at the first
period in the name.

Handle failure of gethostbyaddr

24–29 If gethostbyaddr fails (which, unfortunately is all too common given the number
of misconfigured DNS servers on the Internet; see Section 14.8 of TCPv3) and the
NI_NAMEREQDflag was specified, an error is returned. Otherwise the address string
corresponding to the IP address is formed by inet_ntop .

Return service string

32–42 If the NI_NUMERICSERVflag is specified, just the decimal port number is returned.
Otherwise getservbyport is called. The final argument is a null pointer unless the
NI_DGRAMflag is specified. If getservbyport fails, the decimal port number is
returned instead.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

328 Advanced Name and Address Conversions Chapter 11

libgai/gn_ipv46.c
5 int
6 gn_ipv46(char *host, size_t hostlen, char *serv, size_t servlen,
7 void *aptr, size_t alen, int family, int port, int flags)
8 {
9 char *ptr;

10 struct hostent *hptr;
11 struct servent *sptr;

12 if (hostlen > 0) {
13 if (flags & NI_NUMERICHOST) {
14 if (inet_ntop(family, aptr, host, hostlen) == NULL)
15 return (1);
16 } else {
17 hptr = gethostbyaddr(aptr, alen, family);
18 if (hptr != NULL && hptr->h_name != NULL) {
19 if (flags & NI_NOFQDN) {
20 if ((ptr = strchr(hptr->h_name, ’.’)) != NULL)
21 *ptr = 0; /* overwrite first dot */
22 }
23 snprintf(host, hostlen, "%s", hptr->h_name);
24 } else {
25 if (flags & NI_NAMEREQD)
26 return (1);
27 if (inet_ntop(family, aptr, host, hostlen) == NULL)
28 return (1);
29 }
30 }
31 }
32 if (servlen > 0) {
33 if (flags & NI_NUMERICSERV) {
34 snprintf(serv, servlen, "%d", ntohs(port));
35 } else {
36 sptr = getservbyport(port, (flags & NI_DGRAM) ? "udp" : NULL);
37 if (sptr != NULL && sptr->s_name != NULL)
38 snprintf(serv, servlen, "%s", sptr->s_name);
39 else
40 snprintf(serv, servlen, "%d", ntohs(port));
41 }
42 }
43 return (0);
44 }

libgai/gn_ipv46.c

Figure 11.42 gn_ipv46 function: handle IPv4 and IPv6 socket address structures.

11.17 Summary

getaddrinfo is a useful function that lets us write protocol-independent code. But
calling it directly takes a few steps, and there are still repetitive details that must be han-
dled for different scenarios: go through all the returned structures, ignore error returns
from socket , set the SO_REUSEADDRsocket option for TCP servers, and the like. We
simplify all these details with our five functions tcp_connect , tcp_listen ,

© Copyright 1998 by Prentice Hall PTR, All rights reserved

Chapter 11 Exercises 329

udp_client , udp_connect , and udp_server . We showed the use of these functions
in writing protocol-independent versions of our TCP and UDP daytime clients and day-
time servers.

gethostbyname and gethostbyaddr are also examples of functions that are not
normally reentrant. The two functions share a static result structure to which both
return a pointer. We encounter this problem of reentrancy again with threads in Chap-
ter 23 and discuss ways around the problem. We discussed the _r versions of these two
functions that some vendors provide, which is one solution, but it requires a change in
all the applications that call the functions.

Exercises

11.1 In Figure 11.8 the caller must pass a pointer to an integer to obtain the size of the protocol
address. If the caller does not do this (i.e., passes a null pointer as the final argument), how
can the caller still obtain the actual size of the protocol’s addresses?

11.2 Modify Figure 11.10 to call getnameinfo instead of sock_ntop . What flags should you
pass to getnameinfo ?

11.3 In Section 7.5 we discussed port stealing with the SO_REUSEADDRsocket option. To see
how this works, build the protocol-independent UDP daytime server in Figure 11.15. Start
one instance of the server in one window, binding the wildcard address and some port of
your choosing. Start a client in another window and verify that this server is handling the
client (note the printf in the server). Then start another instance of the server in another
window, this time binding one of the host’s unicast addresses and the same port as the first
server. What problem do you immediately encounter? Fix this problem and restart this
second server. Start a client, send a datagram, and verify that the second server has stolen
the port from the first server. If possible, start the second server again, from a different
login account from the first server, to see if the stealing still succeeds, because some ven-
dors will not allow the second bind unless the user ID is the same as that of the process
that has already bound the port.

11.4 When discussing Figure 11.34 we noted that the address of aipnext is an argument to the
ga_aistruct function, necessitating an extra level of indirection when referencing the
variable. Why do we not make aipnext a global variable, instead of passing its address
as an argument?

11.5 In our discussion of Unix domain at the end of Section 11.5 we mentioned that none of the
IANA service names begin with a slash. Do any of these service names contain a slash?

11.6 At the end of Section 2.10 we showed two telnet examples: to the daytime server and to
the echo server . Knowing that a client goes through the two steps gethostbyname and
connect , which lines output by the client indicate which steps?

11.7 gethostbyaddr can take a long time (up to 80 seconds) to return an error if a hostname
cannot be found for an IP address. Write a new function named getnameinfo_timeo
that takes an additional integer argument specifying the maximum number of seconds to
wait for a reply. If the timer expires and the NI_NAMEREQDflag is not specified, just call
inet_ntop and return an address string.

© Copyright 1998 by Prentice Hall PTR, All rights reserved

