
12

Shared Memory Introduction

12.1 Introduction

Shared memory is the fastest form of IPC available. Once the memory is mapped into
the address space of the processes that are sharing the memory region, no kernel
involvement occurs in passing data between the processes. What is normally required,
however, is some form of synchronization between the processes that are storing and
fetching information to and from the shared memory region. In Part 3, we discussed
various forms of synchronization: mutexes, condition variables, read–write locks, record
locks, and semaphores.

What we mean by ‘‘no kernel involvement’’ is that the processes do not execute any sys-
tem calls into the kernel to pass the data. Obviously, the kernel must establish the mem-
ory mappings that allow the processes to share the memory, and then manage this
memory over time (handle page faults, and the like).

Consider the normal steps involved in the client–server file copying program that
we used as an example for the various types of message passing (Figure 4.1).

• The server reads from the input file. The file data is read by the kernel into its
memory and then copied from the kernel to the process.

• The server writes this data in a message, using a pipe, FIFO, or message queue.
These forms of IPC normally require the data to be copied from the process to
the kernel.

We use the qualifier normally because Posix message queues can be implemented using
memory-mapped I/O (the mmapfunction that we describe in this chapter), as we showed
in Section 5.8 and as we show in the solution to Exercise 12.2. In Figure 12.1, we assume

303

304 Shared Memory Introduction Chapter 12

that Posix message queues are implemented within the kernel, which is another possibil-
ity. But pipes, FIFOs, and System V message queues all involve copying the data from the
process to the kernel for a write or msgsnd , or copying the data from the kernel to the
process for a read or msgrcv .

• The client reads the data from the IPC channel, normally requiring the data to be
copied from the kernel to the process.

• Finally, the data is copied from the client’s buffer, the second argument to the
write function, to the output file.

A total of four copies of the data are normally required. Additionally, these four copies
are done between the kernel and a process, often an expensive copy (more expensive
than copying data within the kernel, or copying data within a single process). Fig-
ure 12.1 depicts this movement of the data between the client and server, through the
kernel.

output
file

IPC
(pipe, FIFO, or

message queue)

input
file

client server

process
kernel

read()write() , mq_send() ,
or msgsnd()

write() read() , mq_receive() ,
or msgrcv()

Figure 12.1 Flow of file data from server to client.

The problem with these forms of IPC—pipes, FIFOs, and message queues—is that
for two processes to exchange information, the information has to go through the ker-
nel.

Shared memory provides a way around this by letting two or more processes share
a region of memory. The processes must, of course, coordinate or synchronize the use of
the shared memory among themselves. (Sharing a common piece of memory is similar
to sharing a disk file, such as the sequence number file used in all the file locking exam-
ples.) Any of the techniques described in Part 3 can be used for this synchronization.

The steps for the client–server example are now as follows:

• The server gets access to a shared memory object using (say) a semaphore.

• The server reads from the input file into the shared memory object. The second
argument to the read , the address of the data buffer, points into the shared
memory object.

• When the read is complete, the server notifies the client, using a semaphore.

• The client writes the data from the shared memory object to the output file.

Section 12.1 Introduction 305

This scenario is depicted in Figure 12.2.

output
file

input
file

client servershared memory

process
kernel

client address space
server address space

Figure 12.2 Copying file data from server to client using shared memory.

In this figure the data is copied only twice—from the input file into shared memory and
from shared memory to the output file. We draw one dashed box enclosing the client
and the shared memory object, and another dashed box enclosing the server and the
shared memory object, to reinforce that the shared memory object appears in the
address space of both the client and the server.

The concepts involved in using shared memory are similar for both the Posix inter-
face and the System V interface. We describe the former in Chapter 13 and the latter in
Chapter 14.

In this chapter, we return to our sequence-number-increment example that we
started in Chapter 9. But we now store the sequence number in memory instead of in a
file.

We first reiterate that memory is not shared by default between a parent and child
across a fork . The program in Figure 12.3 has a parent and child increment a global
integer named count .

Create and initialize semaphore

12–14 We create and initialize a semaphore that protects what we think is a shared vari-
able (the global count). Since this assumption is false, this semaphore is not really
needed. Notice that we remove the semaphore name from the system by calling
sem_unlink , but although this removes the pathname, it has no effect on the
semaphore that is already open. We do this so that the pathname is removed from the
filesystem even if the program aborts.

Set standard output unbuffered and fork

15 We set standard output unbuffered because both the parent and child will be writ-
ing to it. This prevents interleaving of the output from the two processes.

16–29 The parent and child each execute a loop that increments the counter the specified
number of times, being careful to increment the variable only when the semaphore is
held.

306 Shared Memory Introduction Chapter 12

shm / incr1.c
1 #include "unpipc.h"

2 #define SEM_NAME "mysem"

3 int count = 0;

4 int
5 main(int argc, char **argv)
6 {
7 int i, nloop;
8 sem_t *mutex;

9 if (argc != 2)
10 err_quit("usage: incr1 <#loops>");
11 nloop = atoi(argv[1]);

12 /* create, initialize, and unlink semaphore */
13 mutex = Sem_open(Px_ipc_name(SEM_NAME), O_CREAT | O_EXCL, FILE_MODE, 1);
14 Sem_unlink(Px_ipc_name(SEM_NAME));

15 setbuf(stdout, NULL); /* stdout is unbuffered */
16 if (Fork() == 0) { /* child */
17 for (i = 0; i < nloop; i++) {
18 Sem_wait(mutex);
19 printf("child: %d\n", count++);
20 Sem_post(mutex);
21 }
22 exit(0);
23 }
24 /* parent */
25 for (i = 0; i < nloop; i++) {
26 Sem_wait(mutex);
27 printf("parent: %d\n", count++);
28 Sem_post(mutex);
29 }
30 exit(0);
31 }

shm / incr1.c

Figure 12.3 Parent and child both increment the same global.

If we run this program and look only at the output when the system switches
between the parent and child, we have the following:

child: 0 child runs first, counter starts at 0
child: 1
. . .
child: 678
child: 679
parent: 0 child is stopped, parent runs, counter starts at 0
parent: 1
. . .
parent: 1220
parent: 1221
child: 680 parent is stopped, child runs

Section 12.2 mmap, munmap, and msync Functions 307

child: 681
. . .
child: 2078
child: 2079
parent: 1222 child is stopped, parent runs
parent: 1223

and so on

As we can see, both processes have their own copy of the global count . Each starts
with the value of this variable as 0, and each increments its own copy of this variable.
Figure 12.4 shows the parent before calling fork .

int count;

if (Fork() == 0) {
/* child */
...

}

/* parent */
...

parent

parent executing here

Figure 12.4 Parent before calling fork .

When fork is called, the child starts with its own copy of the parent’s data space. Fig-
ure 12.5 shows the two processes after fork returns.

int count;

if (Fork() == 0) {
/* child */
...

}

/* parent */
...

int count;

if (Fork() == 0) {
/* child */
...

}

/* parent */
...

parent child

parent executing here

child executing here

Figure 12.5 Parent and child after fork returns.

We see that the parent and child each have their own copy of the variable count .

12.2 mmap, munmap, and msync Functions

The mmapfunction maps either a file or a Posix shared memory object into the address
space of a process. We use this function for three purposes:

308 Shared Memory Introduction Chapter 12

1. with a regular file to provide memory-mapped I/O (Section 12.3),

2. with special files to provide anonymous memory mappings (Sections 12.4
and 12.5), and

3. with shm_open to provide Posix shared memory between unrelated processes
(Chapter 13).

#include <sys/mman.h>

void *mmap(void * addr, size_t len, int prot, int flags, int fd, off_t offset);

Returns: starting address of mapped region if OK, MAP_FAILEDon error

addr can specify the starting address within the process of where the descriptor fd
should be mapped. Normally, this is specified as a null pointer, telling the kernel to
choose the starting address. In any case, the return value of the function is the starting
address of where the descriptor has been mapped.

len is the number of bytes to map into the address space of the process, starting at
offset bytes from the beginning of the file. Normally, offset is 0. Figure 12.6 shows this
mapping.

address space
of process

high memory

low memory

memory mapped
portion of file

file referenced by descriptor fd:

offset len

memory
mapped
portion
of file

return value of mmap

Figure 12.6 Example of memory-mapped file.

The protection of the memory-mapped region is specified by the prot argument
using the constants in Figure 12.7. The common value for this argument is PROT_READ
| PROT_WRITEfor read–write access.

Section 12.2 mmap, munmap, and msync Functions 309

prot Description

PROT_READ data can be read
PROT_WRITE data can be written
PROT_EXEC data can be executed
PROT_NONE data cannot be accessed

Figure 12.7 prot argument for mmap.h>.

flags Description

MAP_SHARED changes are shared
MAP_PRIVATE changes are private
MAP_FIXED interpret the addr argument exactly

Figure 12.8 flags argument for mmap.

The flags are specified by the constants in Figure 12.8. Either the MAP_SHAREDor
the MAP_PRIVATE flag must be specified, optionally ORed with MAP_FIXED. If
MAP_PRIVATEis specified, then modifications to the mapped data by the calling pro-
cess are visible only to that process and do not change the underlying object (either a
file object or a shared memory object). If MAP_SHAREDis specified, modifications to the
mapped data by the calling process are visible to all processes that are sharing the
object, and these changes do modify the underlying object.

For portability, MAP_FIXEDshould not be specified. If it is not specified, but addr is
not a null pointer, then it is implementation dependent as to what the implementation
does with addr. The nonnull value of addr is normally taken as a hint about where the
memory should be located. Portable code should specify addr as a null pointer and
should not specify MAP_FIXED.

One way to share memory between a parent and child is to call mmap with
MAP_SHAREDbefore calling fork . Posix.1 then guarantees that memory mappings in
the parent are retained in the child. Furthermore, changes made by the parent are visi-
ble to the child and vice versa. We show an example of this shortly.

After mmapreturns success, the fd argument can be closed. This has no effect on the
mapping that was established by mmap.

To remove a mapping from the address space of the process, we call munmap.

#include <sys/mman.h>

int munmap(void * addr, size_t len);

Returns: 0 if OK, −1 on error

The addr argument is the address that was returned by mmap, and the len is the size of
that mapped region. Further references to these addresses result in the generation of a
SIGSEGVsignal to the process (assuming, of course, that a later call to mmapdoes not
reuse this portion of the address space).

310 Shared Memory Introduction Chapter 12

If the mapped region was mapped using MAP_PRIVATE, the changes made are dis-
carded.

In Figure 12.6, the kernel’s virtual memory algorithm keeps the memory-mapped
file (typically on disk) synchronized with the memory-mapped region in memory,
assuming a MAP_SHAREDsegment. That is, if we modify a location in memory that is
memory-mapped to a file, then at some time later the kernel will update the file accord-
ingly. But sometimes, we want to make certain that the file on disk corresponds to what
is in the memory-mapped region, and we call msync to perform this synchronization.

#include <sys/mman.h>

int msync(void * addr, size_t len, int flags);

Returns: 0 if OK, −1 on error

The addr and len arguments normally refer to the entire memory-mapped region of
memory, although subsets of this region can also be specified. The flags argument is
formed from the combination of constants shown in Figure 12.9.

Constant Description

MS_ASYNC perform asynchronous writes
MS_SYNC perform synchronous writes
MS_INVALIDATE invalidate cached data

Figure 12.9 flags for msync function.

One of the two constants MS_ASYNCand MS_SYNCmust be specified, but not both. The
difference in these two is that MS_ASYNCreturns once the write operations are queued
by the kernel, whereas MS_SYNCreturns only after the write operations are complete. If
MS_INVALIDATE is also specified, all in-memory copies of the file data that are incon-
sistent with the file data are invalidated. Subsequent references will obtain data from
the file.

Why Use mmap?

Our description of mmapso far has implied a memory-mapped file: some file that we
open and then map into our address space by calling mmap. The nice feature in using a
memory-mapped file is that all the I/O is done under the covers by the kernel, and we
just write code that fetches and stores values in the memory-mapped region. We never
call read , write , or lseek . Often, this can simplify our code.

Recall our implementation of Posix message queues using mmapand the storing of values into
a msg_hdr structure in Figure 5.30 and the fetching of values from a msg_hdr structure in Fig-
ure 5.32.

Section 12.3 Increment Counter in a Memory-Mapped File 311

Beware of some caveats, however, in that not all files can be memory mapped. Try-
ing to map a descriptor that refers to a terminal or a socket, for example, generates an
error return from mmap. These types of descriptors must be accessed using read and
write (or variants thereof).

Another use of mmapis to provide shared memory between unrelated processes. In
this case, the actual contents of the file become the initial contents of the memory that is
shared, and any changes made by the processes to this shared memory are then copied
back to the file (providing filesystem persistence). This assumes that MAP_SHAREDis
specified, which is required to share the memory between processes.

Details on the implementation of mmapand its relationship to the kernel’s virtual memory
algorithms are provided in [McKusick et al. 1996] for 4.4BSD and in [Vahalia 1996] and [Good-
heart and Cox 1994] for SVR4.

12.3 Increment Counter in a Memory-Mapped File

We now modify Figure 12.3 (which did not work) so that the parent and child share a
piece of memory in which the counter is stored. To do so, we use a memory-mapped
file: a file that we open and then mmapinto our address space. Figure 12.10 shows the
new program.

New command -line argument

11–14 We have a new command-line argument that is the name of a file that will be mem-
ory mapped. We open the file for reading and writing, creating the file if it does not
exist, and then write an integer with a value of 0 to the file.

mmapthen close descriptor

15–16 We call mmapto map the file that was just opened into the memory of this process.
The first argument is a null pointer, telling the system to pick the starting address. The
length is the size of an integer, and we specify read–write access. By specifying a fourth
argument of MAP_SHARED, any changes made by the parent will be seen by the child,
and vice versa. The return value is the starting address of the memory region that will
be shared, and we store it in ptr .

fork

20–34 We set standard output unbuffered and call fork . The parent and child both incre-
ment the integer counter pointed to by ptr .

Memory-mapped files are handled specially by fork , in that memory mappings
created by the parent before calling fork are shared by the child. Therefore, what we
have done by opening the file and calling mmapwith the MAP_SHAREDflag is provide a
piece of memory that is shared between the parent and child. Furthermore, since the
shared memory is a memory-mapped file, any changes to the shared memory (the piece
of memory pointed to by ptr of size sizeof(int)) are also reflected in the actual file
(whose name was specified by the command-line argument).

312 Shared Memory Introduction Chapter 12

shm / incr2.c
1 #include "unpipc.h"

2 #define SEM_NAME "mysem"

3 int
4 main(int argc, char **argv)
5 {
6 int fd, i, nloop, zero = 0;
7 int *ptr;
8 sem_t *mutex;

9 if (argc != 3)
10 err_quit("usage: incr2 <pathname> <#loops>");
11 nloop = atoi(argv[2]);

12 /* open file, initialize to 0, map into memory */
13 fd = Open(argv[1], O_RDWR | O_CREAT, FILE_MODE);
14 Write(fd, &zero, sizeof(int));
15 ptr = Mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
16 Close(fd);

17 /* create, initialize, and unlink semaphore */
18 mutex = Sem_open(Px_ipc_name(SEM_NAME), O_CREAT | O_EXCL, FILE_MODE, 1);
19 Sem_unlink(Px_ipc_name(SEM_NAME));

20 setbuf(stdout, NULL); /* stdout is unbuffered */
21 if (Fork() == 0) { /* child */
22 for (i = 0; i < nloop; i++) {
23 Sem_wait(mutex);
24 printf("child: %d\n", (*ptr)++);
25 Sem_post(mutex);
26 }
27 exit(0);
28 }
29 /* parent */
30 for (i = 0; i < nloop; i++) {
31 Sem_wait(mutex);
32 printf("parent: %d\n", (*ptr)++);
33 Sem_post(mutex);
34 }
35 exit(0);
36 }

shm / incr2.c

Figure 12.10 Parent and child incrementing a counter in shared memory.

If we execute this program, we see that the memory pointed to by ptr is indeed
shared between the parent and child. We show only the values when the kernel
switches between the two processes.

solaris % incr2 /tmp/temp.1 10000
child: 0 child starts first
child: 1
. . .
child: 128
child: 129
parent: 130 child is stopped, parent starts

Section 12.3 Increment Counter in a Memory-Mapped File 313

parent: 131
. . .
parent: 636
parent: 637
child: 638 parent is stopped, child starts
child: 639
. . .
child: 1517
child: 1518
parent: 1519 child is stopped, parent starts
parent: 1520
. . .
parent: 19999 final line of output
solaris % od -D /tmp/temp.1
0000000 0000020000
0000004

Since the file was memory mapped, we can look at the file after the program terminates
with the od program and see that the final value of the counter (20,000) is indeed stored
in the file.

Figure 12.11 is a modification of Figure 12.5 showing the shared memory, and show-
ing that the semaphore is also shared. We show the semaphore as being in the kernel,
but as we mentioned with Posix semaphores, this is not a requirement. Whatever
implementation is used, the semaphore must have at least kernel persistence. The
semaphore could be stored as another memory-mapped file, as we demonstrated in Sec-
tion 10.15.

int *ptr;

if (Fork() == 0) {
/* child */
...

}

/* parent */
...

int *ptr;

if (Fork() == 0) {
/* child */
...

}

/* parent */
...

parent child

parent executing here

child executing here

count

shared memory

0 or 1semaphore:

process
kernel

Figure 12.11 Parent and child sharing memory and a semaphore.

We show that the parent and child each have their own copy of the pointer ptr , but
each copy points to the same integer in shared memory: the counter that both processes
increment.

314 Shared Memory Introduction Chapter 12

We now modify our program from Figure 12.10 to use a Posix memory-based
semaphore instead of a Posix named semaphore, and store this semaphore in the shared
memory. Figure 12.12 is the new program.

shm / incr3.c
1 #include "unpipc.h"

2 struct shared {
3 sem_t mutex; /* the mutex: a Posix memory-based semaphore */
4 int count; /* and the counter */
5 } shared;

6 int
7 main(int argc, char **argv)
8 {
9 int fd, i, nloop;

10 struct shared *ptr;

11 if (argc != 3)
12 err_quit("usage: incr3 <pathname> <#loops>");
13 nloop = atoi(argv[2]);

14 /* open file, initialize to 0, map into memory */
15 fd = Open(argv[1], O_RDWR | O_CREAT, FILE_MODE);
16 Write(fd, &shared, sizeof(struct shared));
17 ptr = Mmap(NULL, sizeof(struct shared), PROT_READ | PROT_WRITE,
18 MAP_SHARED, fd, 0);
19 Close(fd);

20 /* initialize semaphore that is shared between processes */
21 Sem_init(&ptr->mutex, 1, 1);

22 setbuf(stdout, NULL); /* stdout is unbuffered */
23 if (Fork() == 0) { /* child */
24 for (i = 0; i < nloop; i++) {
25 Sem_wait(&ptr->mutex);
26 printf("child: %d\n", ptr->count++);
27 Sem_post(&ptr->mutex);
28 }
29 exit(0);
30 }
31 /* parent */
32 for (i = 0; i < nloop; i++) {
33 Sem_wait(&ptr->mutex);
34 printf("parent: %d\n", ptr->count++);
35 Sem_post(&ptr->mutex);
36 }
37 exit(0);
38 }

shm / incr3.c

Figure 12.12 Counter and semaphore are both in shared memory.

Define structure that will be in shared memory

2–5 We define a structure containing the integer counter and a semaphore to protect it.
This structure will be stored in the shared memory object.

Section 12.4 4.4BSD Anonymous Memory Mapping 315

Map the memory

14–19 We create the file that will be mapped, and write a structure of 0 to the file. All we
are doing is initializing the counter, because the value of the semaphore will be initial-
ized by the call to sem_init . Nevertheless, writing an entire structure of 0 is simpler
than to try to write only an integer of 0.

Initializ e semaphore

20–21 We are now using a memory-based semaphore, instead of a named semaphore, so
we call sem_init to initialize its value to 1. The second argument must be nonzero, to
indicate that the semaphore is being shared between processes.

Figure 12.13 is a modification of Figure 12.11, noting the change that the semaphore
has moved from the kernel into shared memory.

struct shared *ptr;

if (Fork() == 0) {
/* child */
...

}

/* parent */
...

struct shared *ptr;

if (Fork() == 0) {
/* child */
...

}

/* parent */
...

parent child

parent executing here

child executing here

count & semaphore

shared memory

Figure 12.13 Counter and semaphore are now in shared memory.

12.4 4.4BSD Anonymous Memory Mapping

Our examples in Figures 12.10 and 12.12 work fine, but we have to create a file in the
filesystem (the command-line argument), call open , and then write zeros to the file to
initialize it. When the purpose of calling mmapis to provide a piece of mapped memory
that will be shared across a fork , we can simplify this scenario, depending on the
implementation.

1. 4.4BSD provides anonymous memory mapping, which completely avoids having
to create or open a file. Instead, we specify the flags as MAP_SHARED |
MAP_ANONand the fd as −1. The offset is ignored. The memory is initialized to 0.
We show an example of this in Figure 12.14.

2. SVR4 provides /dev/zero , which we open , and we use the resulting descrip-
tor in the call to mmap. This device returns bytes of 0 when read, and anything
written to the device is discarded. We show an example of this in Figure 12.15.

316 Shared Memory Introduction Chapter 12

(Many Berkeley-derived implementations, such as SunOS 4.1.x and BSD/OS 3.1,
also support /dev/zero .)

Figure 12.14 shows the only portion of Figure 12.10 that changes when we use 4.4BSD
anonymous memory mapping.

shm / incr_map_anon.c
3 int
4 main(int argc, char **argv)
5 {
6 int i, nloop;
7 int *ptr;
8 sem_t *mutex;

9 if (argc != 2)
10 err_quit("usage: incr_map_anon <#loops>");
11 nloop = atoi(argv[1]);

12 /* map into memory */
13 ptr = Mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE,
14 MAP_SHARED | MAP_ANON, -1, 0);

shm / incr_map_anon.c

Figure 12.14 4.4BSD anonymous memory mapping.

6–11 The automatic variables fd and zero are gone, as is the command-line argument
that specified the pathname that was created.

12–14 We no longer open a file. The MAP_ANONflag is specified in the call to mmap, and
the fifth argument (the descriptor) is −1.

12.5 SVR4 /dev/zero Memor y Mapping

Figure 12.15 shows the only portion of Figure 12.10 that changes when we map
/dev/zero .

shm / incr_dev_zero.c
3 int
4 main(int argc, char **argv)
5 {
6 int fd, i, nloop;
7 int *ptr;
8 sem_t *mutex;

9 if (argc != 2)
10 err_quit("usage: incr_dev_zero <#loops>");
11 nloop = atoi(argv[1]);

12 /* open /dev/zero, map into memory */
13 fd = Open("/dev/zero", O_RDWR);
14 ptr = Mmap(NULL, sizeof(int), PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
15 Close(fd);

shm / incr_dev_zero.c

Figure 12.15 SVR4 memory mapping of /dev/zero .

Section 12.6 Referencing Memory-Mapped Objects 317

6–11 The automatic variable zero is gone, as is the command-line argument that speci-
fied the pathname that was created.

12–15 We open /dev/zero , and the descriptor is then used in the call to mmap. We are
guaranteed that the memory-mapped region is initialized to 0.

12.6 Referencing Memory-Mapped Objects

When a regular file is memory mapped, the size of the mapping in memory (the second
argument to mmap) normally equals the size of the file. For example, in Figure 12.12 the
file size is set to the size of our shared structure by write , and this value is also the
size of the memory mapping. But these two sizes—the file size and the memory-
mapped size—can differ.

We will use the program shown in Figure 12.16 to explore the mmapfunction in
more detail.

shm / test1.c
1 #include "unpipc.h"

2 int
3 main(int argc, char **argv)
4 {
5 int fd, i;
6 char *ptr;
7 size_t filesize, mmapsize, pagesize;

8 if (argc != 4)
9 err_quit("usage: test1 <pathname> <filesize> <mmapsize>");

10 filesize = atoi(argv[2]);
11 mmapsize = atoi(argv[3]);

12 /* open file: create or truncate; set file size */
13 fd = Open(argv[1], O_RDWR | O_CREAT | O_TRUNC, FILE_MODE);
14 Lseek(fd, filesize - 1, SEEK_SET);
15 Write(fd, "", 1);

16 ptr = Mmap(NULL, mmapsize, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
17 Close(fd);

18 pagesize = Sysconf(_SC_PAGESIZE);
19 printf("PAGESIZE = %ld\n", (long) pagesize);

20 for (i = 0; i < max(filesize, mmapsize); i += pagesize) {
21 printf("ptr[%d] = %d\n", i, ptr[i]);
22 ptr[i] = 1;
23 printf("ptr[%d] = %d\n", i + pagesize - 1, ptr[i + pagesize - 1]);
24 ptr[i + pagesize - 1] = 1;
25 }
26 printf("ptr[%d] = %d\n", i, ptr[i]);

27 exit(0);
28 }

shm / test1.c

Figure 12.16 Memory mapping when mmapequals file size.

318 Shared Memory Introduction Chapter 12

Command -line arguments

8–11 The command-line arguments specify the pathname of the file that will be created
and memory mapped, the size to which that file is set, and the size of the memory map-
ping.

Create , open, truncate file; set file size

12–15 The file being opened is created if it does not exist, or truncated to a size of 0 if it
already exists. The size of the file is then set to the specified size by seeking to that size
minus 1 byte and writing 1 byte.

Memor y map file

16–17 The file is memory mapped, using the size specified as the final command-line
argument. The descriptor is then closed.

Print page siz e

18–19 The page size of the implementation is obtained using sysconf and printed.

Read and store the memory-mapped region

20–26 The memory-mapped region is read (the first byte of each page and the last byte of
each page), and the values printed. We expect the values to all be 0. We also set the first
and last bytes of the page to 1. We expect one of the references to generate a signal
eventually, which will terminate the program. When the for loop terminates, we print
the first byte of the next page, expecting this to fail (assuming that the program has not
already failed).

The first scenario that we show is when the file size equals the memory-mapped
size, but this size is not a multiple of the page size.

solaris % ls -l foo
foo: No such file or directory
solaris % test1 foo 5000 5000
PAGESIZE = 4096
ptr[0] = 0
ptr[4095] = 0
ptr[4096] = 0
ptr[8191] = 0
Segmentation Fault(coredump)
solaris % ls -l foo
-rw-r--r-- 1 rstevens other1 5000 Mar 20 17:18 foo
solaris % od -b -A d foo
0000000 001 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
0000016 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
*
0004080 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 001
0004096 001 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
0004112 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000
*
0005000

The page size is 4096 bytes, and we are able to read the entire second page (indexes 4096
through 8191), but a reference to the third page (index 8192) generates SIGSEGV, which

Section 12.6 Referencing Memory-Mapped Objects 319

the shell prints as ‘‘Segmentation Fault.’’ Even though we set ptr[8191] to 1, this
value is not written to the file, and the file’s size remains 5000. The kernel lets us read
and write that portion of the final page beyond our mapping (since the kernel’s memory
protection works with pages), but anything that we write to this extension is not written
to the file. The other 3 bytes that we set to 1, indexes 0, 4095, and 4096, are copied back
to the file, which we verify with the od command. (The -b option says to print the
bytes in octal, and the -A d option says to print the addresses in decimal.) Figure 12.17
depicts this example.

file

memory-mapped region
remainder
of last page

offset: 0 4999

index: 0 4999 5000 8191

references OK
references
generate
SIGSEGV

file size

mmap() size
Figure 12.17 Memory mapping when mmapsize equals file size.

If we run our example under Digital Unix, we see similar results, but the page size
is now 8192.

alpha % ls -l foo
foo not found
alpha % test1 foo 5000 5000
PAGESIZE = 8192
ptr[0] = 0
ptr[8191] = 0
Memory fault(coredump)
alpha % ls -l foo
-rw-r--r-- 1 rstevens operator 5000 Mar 21 08:40 foo

We are still able to reference beyond the end of our memory-mapped region but within
that page of memory (indexes 5000 through 8191). Referencing ptr[8192] generates
SIGSEGV, as we expect.

In our next example with Figure 12.16, we specify a memory mapping (15000 bytes)
that is larger than the file size (5000 bytes).

solaris % rm foo
solaris % test1 foo 5000 15000
PAGESIZE = 4096
ptr[0] = 0
ptr[4095] = 0
ptr[4096] = 0

320 Shared Memory Introduction Chapter 12

ptr[8191] = 0
Bus Error(coredump)
solaris % ls -l foo
-rw-r--r-- 1 rstevens other1 5000 Mar 20 17:37 foo

The results are similar to our earlier example when the file size and the memory map
size were the same (both 5000). This example generates SIGBUS (which the shell prints
as ‘‘Bus Error ’’), whereas the previous example generated SIGSEGV. The difference is
that SIGBUSmeans we have referenced within our memory-mapped region but beyond
the size of the underlying object. The SIGSEGVin the previous example meant we had
referenced beyond the end of our memory-mapped region. What we have shown here
is that the kernel knows the size of the underlying object that is mapped (the file foo in
this case), even though we have closed the descriptor for that object. The kernel allows
us to specify a size to mmapthat is larger than the size of this object, but we cannot refer-
ence beyond its end (except for the bytes within the final page that are beyond the end
of the object, indexes 5000 through 8191). Figure 12.18 depicts this example.

file

remainder
of page

offset: 0 4999

index: 0 4999 5000 8191 8192 14999

references OK SIGBUS
references
generate
SIGSEGV

file size

mmap() size

Figure 12.18 Memory mapping when mmapsize exceeds file size.

Our next program is shown in Figure 12.19. It shows a common technique for han-
dling a file that is growing: specify a memory-map size that is larger than the file, keep
track of the file’s current size (making certain not to reference beyond the current end-
of-file), and then just let the file’s size increase as more data is written to the file.

Open file

9–11 We open a file, creating it if it does not exist or truncating it if it already exists. The
file is memory mapped with a size of 32768, even though the file’s current size is 0.

Increase file size

12–16 We increase the size of the file, 4096 bytes at a time, by calling ftruncate (Sec-
tion 13.3), and fetch the byte that is now the final byte of the file.

Section 12.6 Referencing Memory-Mapped Objects 321

shm / test2.c
1 #include "unpipc.h"

2 #define FILE "test.data"
3 #define SIZE 32768

4 int
5 main(int argc, char **argv)
6 {
7 int fd, i;
8 char *ptr;

9 /* open: create or truncate; then mmap file */
10 fd = Open(FILE, O_RDWR | O_CREAT | O_TRUNC, FILE_MODE);
11 ptr = Mmap(NULL, SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);

12 for (i = 4096; i <= SIZE; i += 4096) {
13 printf("setting file size to %d\n", i);
14 Ftruncate(fd, i);
15 printf("ptr[%d] = %d\n", i - 1, ptr[i - 1]);
16 }

17 exit(0);
18 }

shm / test2.c

Figure 12.19 Memory map example that lets the file size grow.

When we run this program, we see that as we increase the size of the file, we are
able to reference the new data through our established memory map.

alpha % ls -l test.data
test.data: No such file or directory
alpha % test2
setting file size to 4096
ptr[4095] = 0
setting file size to 8192
ptr[8191] = 0
setting file size to 12288
ptr[12287] = 0
setting file size to 16384
ptr[16383] = 0
setting file size to 20480
ptr[20479] = 0
setting file size to 24576
ptr[24575] = 0
setting file size to 28672
ptr[28671] = 0
setting file size to 32768
ptr[32767] = 0
alpha % ls -l test.data
-rw-r--r-- 1 rstevens other1 32768 Mar 20 17:53 test.data

322 Shared Memory Introduction Chapter 12

This example shows that the kernel keeps track of the size of the underlying object that
is memory mapped (the file test.data in this example), and we are always able to ref-
erence bytes that are within the current file size that are also within our memory map.
We obtain identical results under Solaris 2.6.

This section has dealt with memory-mapped files and mmap. In Exercise 13.1, we
modify our two programs to work with Posix shared memory and see the same results.

12.7 Summary

Shared memory is the fastest form of IPC available, because one copy of the data in the
shared memory is available to all the threads or processes that share the memory. Some
form of synchronization is normally required, however, to coordinate the various
threads or processes that are sharing the memory.

This chapter has focused on the mmapfunction and the mapping of regular files into
memory, because this is one way to share memory between related or unrelated pro-
cesses. Once we have memory mapped a file, we no longer use read , write , or lseek
to access the file; instead, we just fetch or store the memory locations that have been
mapped to the file by mmap. Changing explicit file I/O into fetches and stores of mem-
ory can often simplify our programs and sometimes increase performance.

When the memory is to be shared across a subsequent fork , this can be simplified
by not creating a regular file to map, but using anonymous memory mapping instead.
This involves either a new flag of MAP_ANON(for Berkeley-derived kernels) or mapping
/dev/zero (for SVR4-derived kernels).

Our reason for covering mmapin such detail is both because memory mapping of
files is a useful technique and because mmapis used for Posix shared memory, which is
the topic of the next chapter.

Also available are four additional functions (that we do not cover) defined by Posix
dealing with memory management:

• mlockall causes all of the memory of the process to be memory resident.
munlockall undoes this locking.

• mlock causes a specified range of addresses of the process to be memory resi-
dent, where the function arguments are a starting address and a number of bytes
from that address. munlock unlocks a specified region of memory.

Exercises

12.1 What would happen in Figure 12.19 if we executed the code within the for loop one more
time?

12.2 Assume that we have two processes, a sender and a receiver, with the former just sending
messages to the latter. Assume that System V message queues are used and draw a dia-
gram of how the messages go from the sender to the receiver. Now assume that our

Chapter 12 Exercises 323

implementation of Posix message queues from Section 5.8 is used, and draw a diagram of
the transfer of messages.

12.3 With mmapand MAP_SHARED, we said that the kernel virtual memory algorithm updates
the actual file with any modifications that are made to the memory image. Read the man-
ual page for /dev/zero to determine what happens when the kernel writes the changes
back to the file.

12.4 Modify Figure 12.10 to specify MAP_PRIVATEinstead of MAP_SHARED, and verify that the
results are similar to the results from Figure 12.3. What are the contents of the file that is
memory mapped?

12.5 In Section 6.9, we mentioned that one way to select on a System V message queue is to
create a piece of anonymous shared memory, create a child, and let the child block in its
call to msgrcv , reading the message into shared memory. The parent also creates two
pipes; one is used by the child to notify the parent that a message is ready in shared mem-
ory, and the other pipe is used by the parent to notify the child that the shared memory is
now available. This allows the parent to select on the read end of the pipe, along with
any other descriptors on which it wants to select . Code this solution. Call our my_shm
function (Figure A.46) to allocate the anonymous shared memory object. Use our
msgcreate and msgsnd programs from Section 6.6 to create the message queue, and then
place records onto the queue. The parent should just print the size and type of each mes-
sage that the child reads.

